回顾该学科的创立历史,大约从 1900 年到 1930 年代中期,涉及数十位物理学家甚至一些数学家的工作,涉及许多实验和观察,以及许多错误的开始和停止,我们将微积分呈现为既成事实,然后回溯以填补我们的理解。不过,读者一开始就应该明白,这种微积分有大量的实验依据。在这个开场讲座中,我们通过一个例子对比了经典力学和量子力学。这个例子清楚地说明了牛顿定律所表达的经典世界观与量子力学规则所表达的现代世界观之间的差异。谐振子是典型的物理系统,因此,对它的分析,无论是经典的还是量子的,都是该学科的原型。在本讲座中,我们将回顾谐振子的经典处理,并概述量子处理。量子处理似乎是临时的、没有动机的,应该会引起一些不安,甚至困惑。读者会看到,经典处理的方法和结果的极端简单性与量子处理的复杂性形成鲜明对比。事实上,虽然经典处理的应用和含义从数学本身就很明显,但量子处理的方法和结果却需要解释和阐释。我们在这里给出了量子处理的标准解释,但读者会发现,我们的解释虽然内部连贯,但却没有动机。这种解释是在数年的时间里与量子力学机制本身的发展同时发展起来的,但读者应该知道其他解释也是可能的。在本讲座的最后,我们将深入探讨一些围绕量子力学解释的基础问题。这与我们在本书中的其余部分的做法有所不同,在其余部分中,形式主义的发展优先于哲学问题。1 尽管如此,我们希望读者从一开始就意识到,量子力学的世界观与经典的世界观截然不同,留下了许多深刻的哲学问题。欢迎来到量子世界!
最大的挑战之一是第一次感到被抛弃。我当时五岁,我记得父亲把我抱进隔离医院,把我一个人留在那里。在我隔离期间,父母不准来探望我。幸运的是,我母亲自愿给医院里的孩子们热敷,所以她每天都能花一点时间陪我。我的家人不得不面对家里有人患脊髓灰质炎的耻辱。一些邻居回避我的父母和妹妹。(威尔逊)
扩散概率模型(DDPM)[39,40],通过开发合适的3D表示,例如,体积网格[50],点云[3,53],三角形网格[24,32],隐式含量[24,32],隐式代表[12,28,36,36,36,36,56,36,56,36,36,36,56)。但是,这些生成模型的一个共同主题是匹配由训练数据定义的经验分布以及从潜在空间的先前分布中得出的诱导分布。这些方法在3D域中对下游应用程序至关重要的3D域中没有明确模型。考虑使用隐式形状代表的许多状态形状发生器。合成形状通常具有断开的作品,并具有其他物理稳定性和几何可行性的问题。现有技术的一个主要问题是,他们只看到培训实例,这是一组非常稀疏的样本。但是,它们没有对合成实例的几何和物理特性进行建模。这种问题不容易通过开发合适的神经代表来解决。随着人造形状具有多种拓扑结构,在可以对不同拓扑结构建模的代表下执行这些属性,例如隐式表面和点云仍然非常具有挑战性。在本文中,我们介绍了一种名为GPLD3D的新颖方法,该方法极大地增强了合成形状的几何学性和物理稳定性。考虑一个预先训练的生成模型,该模型将潜在空间映射到形状空间。我们将潜在扩散范式[12,34,36,56]证明是一种最先进的形状基因产生模型。与训练一个扩散模型不同,该模型将潜在空间的高斯分布映射到由训练形状的潜在代码定义的经验分布,我们介绍了一个潜在代码的优质检查器,以定义潜在空间的连续正规化分布。此质量检查器集成了一个学到的功能,该功能量化了合成形状的几何可行性评分以及量化其物理稳定性评分的刚度ma-Trix的光谱特性。我们展示了如何扩展最新的扩散框架EDM [20],以整合数据分布和学习质量的denoising网络的质量检查器。关键贡献是一种原则性的方法,它决定了数据分散的损失条款与不同噪声水平的质量检查器之间的权衡参数。我们已经评估了shapenet-v2上GPLD3D的性能[6]。实验结果表明,在多个指标上,GPLD3D显着优于最先进的形状发生器。我们还提出了一项消融研究,以证明合并质量检查器并优化训练损失的超参数的重要性。
● 制定并实施适合不同学习者的专业体育课程,根据需要整合适应性技术和修改。 ● 每周进行两到三天的体育课,重点培养运动技能、身体素质和合作游戏。 ● 监督和协调辅助项目,例如美国心脏协会年度筹款活动,强调心脏健康教育。 ● 与班主任和学校主任密切合作,满足个别学生的需求,并将体育目标纳入他们的整体教育计划。 ● 监督和促进有组织的课间活动,确保所有学生拥有安全且有趣的环境。 ● 坚持最高标准的体育精神、道德和公平竞争,引导学生培养对体育活动和竞争的积极态度。 ● 在所有学生互动和交流中保持严格保密。 ● 提供学生进步的意见和反馈,每年两次为成绩报告做出贡献。 ● 积极参与任何课程开发和整合项目,将体育目标与更广泛的学校计划相结合。 ● 参加每个学年开始时的家长之夜,概述课程目标。 ● 每年参加闭幕式,庆祝学生在各领域的成功和成就。 ● 承担学校主任分配的任何其他任务或责任。
过去的研究发现,人们所听的音乐可能会影响他们的注意力。这项研究研究了不同类型的音乐对神经发散者 (ND) 和神经典型 (NT) 人群的任务专注度的影响。年龄在 14 至 18 岁之间,共有 24 名参与者,其中 12 名是 ND,12 名 NT。参与者被平均分成四个音乐组:古典音乐、游戏音乐、个人收藏音乐和无音乐。学生研究人员使用精神运动警觉测试 (PVT) 和脑电图 (EEG) 来确定每个参与者在听音乐时的任务专注度水平。研究发现,音乐对专注度的影响过于主观和个人化,无法得出哪种音乐类型最好/最差的大致趋势。这对于音乐治疗领域很重要,因为它表明音乐需要根据每个客户进行个性化设置,并且不能依赖于总体趋势。
经典信号处理和非经典信号处理:信号的节奏 作者:Attaphongse Taparugssanagorn 本书首次出版于 2023 年 剑桥学者出版社 Lady Stephenson 图书馆,纽卡斯尔,NE6 2PA,英国 大英图书馆出版数据编目 本书的目录记录可从大英图书馆获取 版权所有 © 2023 Attaphongse Taparugssanagorn 保留本书的所有权利。 未经版权所有者事先许可,不得以任何形式或任何方式(电子、机械、影印、录制或其他方式)复制、存储在检索系统中或传播本书的任何部分。 ISBN (10):1-5275-2864-2 ISBN (13):978-1-5275-2864-2
身体残疾一直是我们社区面临的一个大问题。衰老、疾病和其他变量都是造成这些问题的原因。这就是为什么电动轮椅被设计用来帮助身体残疾人的原因。轮椅使用者已经接触过各种旨在提高其行动能力的辅助技术。因此,不同的辅助技术最近在帮助轮椅使用者移动方面发挥了重要作用,这是因为技术变化太快了。最近流行的辅助技术包括操纵杆、脑机接口、语音识别、舌头驱动系统、眼动追踪器和吸气和吹气。然而,由于某些国家/地区个人之间的技术差距,一些最有益的辅助技术变得难以利用。本研究的目的是研究和回顾这些身体残疾辅助技术的比较研究。在研究中,将舌头驱动系统、眼动追踪器、语音识别和吸气和吹气技术与操纵杆辅助技术进行了比较。比较基于选定的参数,包括可用性命令、疲劳、响应时间、信息传输速率、效果和成本。根据研究结果,研究人员提出了适合发展中国家的配备辅助技术的轮椅设计方案。关键词:身体残疾、电动轮椅、辅助技术、发展中国家。_______________________________________________________________________________________________ 1. 引言
*ICARE – CNRS,1C avenue de la recherche scientifique,45071 Orléans Cedex,法国。**CNES,18 avenue Edouard Belin,31401 Toulouse,法国。***Snecma,Division Moteurs Spatiaux,Forêt de Vernon,BP 802,27208 Vernon,法国。摘要 回顾了由 Snecma 开发的技术演示器 5 kW 级 PPS ® X000 霍尔效应推力器的性能特征,输入电功率范围为 1.5 kW 至 7 kW。结果表明,PPS ® X000 推力器既可以在高推力域(高达 350 mN)下运行,也可以在高比冲域(高达 3200 s)下运行。 PPS ® X000 电动推力器的双模功能使其非常适合重型地球静止通信卫星的轨道定位和定位等任务。机器人探索太阳系外行星和遥远彗星等太空任务需要超过 1 N 的推力。
生物伦理学的标准观点区分了可能伤害或使特定个体受益的“影响个人”干预(例如通过基因组编辑)和决定哪个个体诞生的“影响身份”干预(例如通过基因选择)。斯帕罗对过去几十年来有关生殖技术争论的核心假设之一提出了质疑。他认为,对人类胚胎的直接基因改造不应归类为“影响个人”,而应归类为“影响身份”,因为在可预见的未来,任何基因组编辑“几乎肯定”涉及创建和编辑多个胚胎,以及通过植入前基因诊断选择“最佳”胚胎。斯帕罗还认为,“影响个人”和“影响身份”干预之间的区别具有至关重要的伦理意义:“我们选择胚胎的理由比我们修改胚胎的理由要弱”(Sparrow 2022 )。因此,他将基因组编辑归类为“影响身份”的干预,并得出结论,即使人们认为增强是道德义务,也没有理由要求制定法律来增强。在这篇评论文章中,我们更进一步质疑了有关生殖技术的生物伦理辩论中的核心假设。我们认为,“影响个人”和“影响身份”干预之间的区别是基于一种值得怀疑的物质起源本质主义。对这种本质主义的人类身份方法的质疑使得我们可以将基因组编辑和基因选择视为比标准方法中更相似的东西。它
将几何模型拟合到离群污染数据上是可证明的难点。许多计算机视觉系统依靠随机抽样启发式方法来解决稳健拟合问题,但这种方法不提供最优性保证和误差界限。因此,开发新方法来弥合成本高昂的精确解决方案与无法提供质量保证的快速启发式方法之间的差距至关重要。在本文中,我们提出了一种用于稳健拟合的混合量子经典算法。我们的核心贡献是一种新颖的稳健拟合公式,它可以解决一系列整数程序并以全局解或误差界限终止。组合子问题适合量子退火器,这有助于有效地收紧界限。虽然我们对量子计算的使用并没有克服稳健拟合的根本难点,但通过提供误差界限,我们的算法是对随机启发式算法的实际改进。此外,我们的工作代表了量子计算在计算机视觉中的具体应用。我们展示了使用实际量子计算机(D-Wave Advantage)和通过模拟 1 获得的结果。
