您无权访问此服务器上的“http://www.osha.gov/sites/ default/files/publications/OSHA3844.pdf”。
2022 年 1 月 27 日 — (U) 今天,美国情报界 (IC) 拥有大量且不断增长的信息……美国,获取持久位置。
摘要古老的茶厂是珍贵的自然资源和茶叶遗传多样性的来源,对于研究植物的进化机制,多样化和驯化而具有巨大的价值。古老的茶叶植物之间的总体遗传多样性以及自然选择期间发生的遗传变化仍然很少理解。在这里,我们报告了由120个古代茶厂组成的八个不同群体的基因组重新陈述:来自吉州省的六组和云南省的两个团体。基于8,082,370个鉴定的高质量SNP,我们构建了系统发育关系,评估了种群结构并进行了全基因组关联研究(GWAS)。我们的系统发育分析表明,120个古老的茶厂主要聚集在三组和五个单个分支中,这与主成分分析(PCA)的结果一致。基于遗传结构分析,将古老的茶水进一步分为七个亚群。此外,发现古老的茶叶植物的变化不会因外部自然环境或人工育种的压力而降低(非同义/同义词= 1.05)。通过整合GWA,选择信号和基因功能预测,四个候选基因与三个叶片性状显着相关,并且两个候选基因与植物类型显着相关。这些候选基因可用于进一步的功能表征和茶植物的遗传改善。
禽心和哺乳动物心以类似的方式将血液传递到肺和身体[Sturkie的鸟类生理学,第五版]。鸟类和哺乳动物具有房屋和心室隔s,可以在氧化和脱氧的血液之间分离,并完全分离全身和肺部循环。通过大型骑士静脉从体内从人体返回到右心房。脱氧的血液移至右心室,在该心室被加压以进行肺循环。血液转储其二氧化碳,并通过肺毛细血管获取O2。与哺乳动物一样,新近充氧的血液通过四个大肺静脉回到左心房。含氧血液移至左心室,在那里加压以进行全身循环。
在这项研究中,我们提出了使用多平面和多层跨前(M3T)网络的三维医学图像分类器,以在3D MRI图像中对阿尔茨海默氏病(AD)进行分类。提出的网络协同委托3D CNN,2D CNN和变压器用于准确的AD分类。3D CNN用于执行本机3D表示学习,而2D CNN用于利用大型2D数据库和2D代表学习的预训练权重。使用具有感应性偏置的CNN网络有效地提取局部大脑中与AD相关的异常的信息信息。跨前网络还用于获得CNN后多平面(轴向,冠状和矢状)和多切片图像之间的注意力关系。也可以使用不感应偏置的变压器学习分布在大脑中较大区域的差异。在此期间,我们使用了来自阿尔茨海默氏病神经影像学计划(ADNI)的训练数据集,该计划总共包含4,786 3D T1加权MRI图像。对于有效数据,我们使用了来自三个不同机构的数据集:澳大利亚成像,生物标志物和生活方式旗舰研究(AIBL)(AIBL),开放访问Imaging研究(OASIS)的开放访问系列(OASIS)以及来自培训数据集中的一些ADNI数据。我们提出的M3T基于曲线(AUC)下的区域(AUC)和AD分类的分类精度,与常规的3D分类网络相结合。这项研究表示,所构成的网络M3T在多机构验证数据库中实现了最高的性能,并证明了该方法有效地将CNN和Transformer用于3D医学图像的可行性。
小麦的复杂进化史已经塑造了其相关的根微生物群落。但是,考虑农业强化的影响是有限的。这项研究调查了内源性(基因组多倍体化)和外源性(化肥的引入)因素如何形成有益根瘤菌的选择。,我们结合了与培养的依赖性和依赖性方法,分析根瘤菌群落组成及其在根 - 土壤界面上的相关功能,来自一系列祖先和现代小麦基因型,随着和不添加化学肥料而生长。在受控的盆栽实验中,受精和土壤室(根际,根茎)是塑造根瘤菌群落组成的主要因素,而小麦基因组从二倍体到异源倍倍倍化植物的扩展导致了下一个最大的变化。根茎衍生的可培养的细菌收集植物生长促进(PGP)的特征表明,施肥会降低大多倍小麦中假定的植物生长促进性根瘤菌的丰度,但在野生小麦祖细胞中没有。这些分离株的分类学分类表明,这些差异在很大程度上是由代表多倍体小麦中细菌杆菌的有益根细菌选择的选择驱动的。此外,与二倍体野生小麦相比,六倍小麦有益细菌种群的复杂性大大降低。因此,我们建议以肥料依赖性的方式驯化与PGP功能的根相关细菌属可能会受到损害,这是指导未来的植物育种计划的潜在至关重要的发现,以在不断变化的环境中改善作物生产系统。
摘要。量子计算机机器学习的最新进展主要得益于两项发现。将特征映射到指数级大的希尔伯特空间中使它们线性可分——量子电路仅执行线性运算。参数移位规则允许在量子硬件上轻松计算目标函数梯度——然后可以使用经典优化器来找到其最小值。这使我们能够构建一个二元变分量子分类器,它比经典分类器具有一些优势。在本文中,我们将这个想法扩展到构建多类分类器并将其应用于真实数据。介绍了一项涉及多个特征图和经典优化器以及参数化电路的不同重复的系统研究。在模拟环境和真实的 IBM 量子计算机上比较了模型的准确性。
在有限的预算下,获得固定的分类任务集的高质量结果是众包中的一个关键问题。应探索引入人工智能模型来补充该过程。然而,现有的方法很少直接解决这个问题;现有的方法是在如何使用嘈杂的众包数据训练人工智能模型的背景下提出的。本文提出了一种更直接的方法来解决在有限的预算下引入人工智能来提高人类工作者在固定数量任务中的结果的问题;我们将人工智能模型视为同事,并汇总人类和人工智能工作者的结果。提出的“人机协同 EM”(HAEM)算法扩展了 Dawid-Skene 模型,将 AI 模型视为同事,并明确计算它们的混淆矩阵以得出更高质量的聚合结果。我们进行了大量的实验,并将 HAEM 与两种方法(MBEM 和 Dawid-Skene 模型)进行了比较。我们发现,在大多数情况下,基于 AI 的 HAEM 比 Dawid-Skene 模型表现出更好的性能,并且当 AI 模型性能不佳时,它表现出比 MBEM 更好的性能。
