作为一种广泛使用且经过验证的技术,触摸屏正在进入民用飞机的驾驶舱。作为 ACROSS(减少压力和工作量的先进驾驶舱)项目的一部分,NLR 设计了一种具有触摸交互功能的创新驾驶舱显示器,用于战术飞行控制;改变飞机的(垂直)速度、航向和/或高度。在当前的驾驶舱配置中,此自动驾驶 (AP) 功能的控件在空间上与它们调整的参数的可视化分离,从而引入了身体和精神工作量的方面。本文介绍了消除这种物理间隙并通过直接操作 (DM) 创建直观交互的人机界面 (HMI) 设计过程。DM 的特点是直接在图形对象可视化的位置对其进行操作,其方式至少与操作物理对象大致相对应。它具有高度直观性,不易出错的潜力。因此,假设 HMI 设计可以减少飞行员的工作量并同时提高态势感知 (SA)。使用 NLR 的飞行模拟器对该概念进行评估。实验结果表明,战术飞行控制设计概念具有巨大潜力,但交互实现需要进一步改进,因为它增加了飞行员的工作量,尤其是在湍流条件下。
引言脱发Areata(AA)是一种毛囊(HF)的自身免疫性疾病,其范围从头皮上的圆形斑块到完全脱发,与巨大的心理爆发有关,与患者相关(1,2)。AA的病因尚未完全了解,但可能涉及遗传易感性和环境触发器的组合(3)。我们先前表明,细胞毒性的天然杀戮2组成员D阳性(NKG2D +),CD8 + T细胞积累在皮肤中并有助于HF破坏(4、5)。AA的发病机理还与促促炎细胞因子的过度表达有关,例如干扰素γ(IFN-γ)和共同γ链(γC)细胞因子,这些细胞因子破坏了HF免疫特权并促进细胞毒性T淋巴细胞的生存和功能。值得注意的是,这些促进性细胞因子通过其受体通过Janus激酶/信号转移器的家族和转录激活剂(JAK/STAT)发出信号。JAK/STAT途径在先天和适应性免疫以及Hema-Topoiesis中都起着至关重要的作用。jak/stat途径的不受约束的激活有助于多种自身免疫性疾病和增殖性疾病,使JAKS成为治疗此类疾病的药理操作的有吸引力的靶标(8,9)。的确,小分子JAK抑制剂(JAKI)在治疗类风湿关节炎和骨髓纤维化以及其他自身免疫性和恶性增生性疾病方面表现出临床效率(10-12)。AA的特征是JAK/STAT活性的失调,特别是γC细胞因子和IFN-γ信号传导途径(3,4)。我们的实验室最近率先使用JAK1/2抑制剂鲁唑替尼和bariticinib,以及pan-jak抑制剂Tofacitinib在人AA治疗中的使用(3,13-15)。然而,尚未研究JAK1,JAK2和JAK3抑制对AA中Ruxolitinib,Bariticinib和Tofacitinib的治疗益处的相对贡献。最近,许多JAK选择性抑制剂已进入临床试验,以治疗各种恶性肿瘤和炎症性疾病。例如,一种JAK1选择性抑制剂Incb039110在慢性斑块牛皮癣和髓纤维的II期试验中显示出效率(16,17)。JAK2选择性抑制作用 - ITOR CEP-33779似乎在全身性红斑狼疮的小鼠模型中有效(18)。fedra-tinib和parcritinib是其他JAK2选择性抑制剂,在髓增生性疾病的鼠模型以及髓样和淋巴性恶性肿瘤中表现出治疗性有效性(19,20,20)。
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
扩展数据图 1. 使用 RFdiffusion 设计 β 链配对支架。为了充分利用 RFdiffusion 的多样化生成潜力,同时鼓励在设计输出中使用 β 链界面,我们实现了一种界面调节算法,该算法可根据简单的用户输入生成 SS/ADJ 调节张量。该模型以张量的形式理解折叠调节,这些张量标记每个残基(a,顶部和左侧)的二级结构(蓝色)以及这些二级结构块的邻接关系(a,黄色中心)。用户指定的参数指定了以下信息:结合剂界面二级结构块(在本例中为 β 链)、该块的长度(b,结合剂张量 L 中的青色块)以及结合剂块相邻的靶位残基(b,靶位张量 T 中的青色块)。根据这些预定义参数,该算法随机采样结合剂界面二级结构块在残基索引空间中的位置,同时保持与指定靶位残基的确定邻接关系(绿色)。该用户定义的调节张量将扩散输出导向β链配对的结合物-靶标界面 (c)。此前,RFdiffusion 界面设计计算可以针对指定为靶标“热点”的特定残基,以指定要结合的靶标残基。而这种新的链间 SS/ADJ 调节功能,使用户能够在结合物支架生成过程中指定“β链热点”或“ɑ-螺旋热点”。基于扩展的结合物-靶标 SS/ADJ 张量调节的结合物支架输出,支持用户指定 β 链界面类型的设计。
第一读者Catherine Grgicak,博士学位生物医学法医学助理教授第二读者Robin Cotton,博士学位副教授兼生物医学法医学
AS/RS(自动存储和检索系统)是一个具有质量的存储和运输系统,可以通过自动化产品的可容纳和存储产品来实现有效的仓库管理。自动化具有诸如降低人工成本和工作时间,改善工作质量以及准确管理库存差异的优点(Roodbergen&Vis,2009年)。但是,从自动仓库中挑选效率会受到货架上放置的产品位置的影响,如果效率很差,它将成为整个运输过程中的瓶颈。为了提高采摘效率,应将具有较高频率的产品放置在检索端口附近。或,如果您使用的是两叉式起重机,则有必要将架子彼此靠近,以便可能同时检索的产品。这些问题被总体视为放置优化问题。设施布局问题在各种现实世界中起着至关重要的作用。它涉及在给定的资源和约束下优化多个元素或对象的布置。例外包括设施安置(De Vries,Van de Klundert和Wagelmans,2020年),交付路线优化(Aljohani,2023年)和工厂布局设计(Li,Wang,Fan,Yu,Yu,&Chu,2021年)。解决设施的布局问题提供了几种好处
HD,亨廷顿氏病; Ole,开放标签扩展; NHS,自然史研究。 1。 clinicaltrials.gov/ct2/show/nct03342053(20024年1月访问); 2。 clinicaltrials.gov/ct2/show/nct03664804(2024年1月访问); 3。 clinicaltrials.gov/ct2/show/nct03761849(2024年1月访问); 4。 Roche新闻稿。 可在:https://www.roche.com/media/releases/med-cor-2021-03-22b.htm(2024年1月访问); 5。 Tortelli R等。 第15届CDHI HD Therapeutics会议HD,亨廷顿氏病; Ole,开放标签扩展; NHS,自然史研究。1。clinicaltrials.gov/ct2/show/nct03342053(20024年1月访问); 2。clinicaltrials.gov/ct2/show/nct03664804(2024年1月访问); 3。clinicaltrials.gov/ct2/show/nct03761849(2024年1月访问); 4。Roche新闻稿。可在:https://www.roche.com/media/releases/med-cor-2021-03-22b.htm(2024年1月访问); 5。Tortelli R等。第15届CDHI HD Therapeutics会议
因残疾而遇到困难并希望获得学术调整和/或辅助艾滋病的学生必须与ODTU残疾人支持办公室和/或课程讲师以及学术部门的残疾学生顾问(对于列表:http://engelsiz.metu.metu.edu.edu.tr/en/Advisor-Students-Disents-Disabitials)。有关详细信息,请访问残疾人支持办公室的网站:https://engelsiz.metu.edu.dr/en/
先天免疫反应代表了防御入侵病原体的第一线。活性氧(ROS)和反应性氮种(RNS)与先天免疫功能的各个方面有关,涉及呼吸道爆发和浮力杂志的激活。这些反应性物种在细胞环境中广泛分布是短暂的中间体,在细胞信号传导和增殖中起着至关重要的作用,并且很可能取决于其亚细胞位点的折误。NADPH氧化酶复合物会产生超氧化阴离子(O 2• - ),该激素是过氧化抗菌氢(H 2 O 2)的前体,而H 2 O 2由骨髓氧化酶(MPO)杀死,以杀死型酸(H2O)。h 2 o 2调节氧化还原响应的转录因子的表达,即NF-KB,NRF2和HIF-1,从而介导了基于氧化还原的表观遗传学修改。免疫细胞的存活和功能受到氧化还原对照,并取决于细胞内和细胞外ROS/RN。当前的综述着重于参与免疫反应激活的氧化还原因子以及ROS在蛋白质中氧化修饰中的作用在巨噬细胞极化和中性粒细胞功能中。