GE 提供功率从 1kW 到 1MW 的电力产品,适用于在航空航天、工业和军事等恶劣环境下运行的车辆应用。基于 SiC 的电源模块是先进电力电子系统的一种支持技术。这些模块将 GE 的线路可更换单元 (LRU) 的功率密度提高多达 2 倍,同时将重量减轻多达 50%,同时简化了互连布局。我们从芯片到系统级架构的垂直整合经验为优化复杂应用的设计和封装密度提供了前所未有的优势。借助 GE 的 SiC 经验,您可以节省开发时间,以部署满足您高性能需求的卓越电力电子产品。
摘要:硅光子学的应用范围正在从用于数据和电信的高速收发器迅速发展到适用于许多不同市场的广泛功能,尤其是在传感和计算领域。因此,对新构建模块和增强性能的需求正在加速和多样化。在这种背景下,新材料、芯片和薄膜芯片的异构集成正变得至关重要。但要实现满足这种多样化需求的工业供应链将具有挑战性,可能需要一种新的供应链模型,在参与各方之间建立专门的标准化和测试方法。这篇评论文章讨论了硅光子学中异构集成带来的机遇和挑战,特别是未来市场增长和异构集成工艺流程的设计。
Niels Quack 副教授 航空机械与机电一体化工程学院微系统与纳米系统 悉尼大学 电子邮件:niels.quack@sydney.edu.au 摘要:光子集成电路利用单个芯片上大量光学元件的紧密集成。随着技术的成熟,大规模集成有望释放可编程集成光学、光子加速器、神经形态计算或量子光子集成电路等新兴概念的潜力。这种多功能光子集成电路从可扩展的单个相位和幅度控制单元数量中受益匪浅,此外还有用于光谱滤波、光电检测、高速调制、低损耗光学路由和耦合以及电气路由和接口的高性能组件。在光子集成电路的材料平台中,硅脱颖而出,因为它可以利用微电子行业的优化生态系统和高性能。在光子信号控制的物理效应中,纳米力学脱颖而出,因为它具有低光损耗、低功耗、紧凑的体积和同时在宽光谱范围内运行的特点。然而,虽然微机电系统 (MEMS) 通常用于消费电子产品,但它们在光子学中的大规模集成迄今为止仍被证明具有挑战性。在本次演讲中,我将概述在将硅光子 MEMS 扩展到大型电路方面取得的最新成就。我将总结基于 IMEC 先进的标准化硅光子 iSiPP50G 平台的 MEMS 集成,该平台是我们在欧洲 H2020 项目 morphic 中开发的。我们的晶圆级技术平台包括通过后处理实现的 MEMS 发布、通过晶圆键合实现的晶圆级密封以及通过倒装芯片键合和光纤连接实现的电气和光学接口。我将介绍使用 MEMS 可调环形谐振器的 MEMS 可调耦合器、开关、移相器和光谱控制的实验结果,并概述我们如何通过集成纳米机电压电执行器进一步扩展可编程光子学。我们的设备工作时驱动电压通常低于 30V,占用面积小于 100 x 100 μm2,插入损耗低至 < 0.3 dB,每台设备的电耗低至 1 nW,响应时间为 μs。我们在标准硅光子学中同时进行了低损耗、紧凑占用面积、宽带响应、低功耗和快速 MEMS 的里程碑式实验演示,使我们的技术特别适合需要超大规模光子集成的新兴应用,例如光子学计算或可编程光子学。
市场新闻 6 智能手机出货量将在 2023 年第三季度小幅下滑后复苏 微电子新闻 8 CML 完成对微波技术的收购 宽带隙电子新闻 10 DENSO 和三菱电机向 Coherent 的 SiC 部门投资 10 亿美元 • Soitec 启动 SmartSiC 晶圆生产工厂 • J2 和 HKSTP 在香港建立第一家 SiC 晶圆厂 • onsemi 完成韩国 SiC 晶圆厂扩建 • 英飞凌完成对 GaN Systems 的收购 • 英飞凌签署多年期协议,为现代/起亚供应电源半导体 • 美国国防部为北卡罗来纳州立大学牵头的“CLAWS”微电子公共区域创新中心拨款 3940 万美元 • GlobalFoundries 获得美国政府 3500 万美元资助,以加速 200 毫米 GaN-on-Si 芯片的生产 • 佛蒙特大学-GF 联盟被指定为技术中心 • Element Six 入选美国国防部 LADDIS 计划 • 首款 JEDEC 标准顶部冷却表面贴装 TOLT GaN晶体管 • 东京农工大学和日本酸素公司通过MOVPE实现高纯度Ga 2 O 3薄膜的高速生长 材料和加工设备新闻 27 Riber的MBE 49 GaN将与MOCVD竞争200mm GN-on-Si • ELEMENT 3–5的ACCELERATOR 350K为批量生产提供单晶AlN • Aehr的收入同比几乎翻了一番 LED新闻 32 Mojo Vision的A轮融资几乎翻了一番,达到4350万美元 • NS Nanotech获得100万美元NSERC资助,用于开发纳米级LED和激光器 • ams OSRAM筹集22.5亿欧元以满足2025/26年的融资需求 光电子新闻 38 SuperLight Photonics在与DeepTechXL和oost NL的投资轮中获得种子资金 光通信新闻 40 ECOC 2023的新闻 • Coherent和Kinetic延长合作伙伴关系以启用网络边缘的 100G 服务 • OpenLight 与 Spark 合作扩展设计服务 • imec 推出 SiGe BiCMOS 光接收器,总数据速率达到 200Gbps 光伏新闻 50 NREL 创下 D-HVPE 生长的单结 GaAs 电池 27% 的效率记录
抽象的硅碳化物,SIC是使用最广泛的材料之一,在诸如航空航天,电子,工业炉和耐磨机械零件等行业中起着至关重要的作用。尽管SIC被广泛用于电子和其他高科技应用中,但冶金,磨料和难治性行业占主导地位。仅在过去的五到六年中,SIC才在半导体行业中发挥了新的重要作用。SIC已成为驱动电气化的关键材料。它是独特的物理特性,宽阔的带隙,尤其是高温性能和“易于制造性的易用性,使其成为关键的材料。使SIC如此独特的物理特性在SIC二极管,晶体管和模块的大规模制造中也代表了一些严重的问题。sic是一种非常艰难的材料,它的莫尔硬度额定值为9.5,接近钻石。就像半导体行业需要高质量缺陷的硅晶圆一样,SIC行业也是如此。高质量的无缺晶石刚刚进入市场。它们是4个和六个晶圆,可以允许SIC。这些boules可以在晶圆中“切成薄片”,并在标准的CMOS制造过程中运行。接下来是将晶片划分到设备中的。钻石锯必须以非常缓慢的速度运行,几乎像钻石本身一样硬。die附件带来了一个有趣的问题。设备通常在200+ d c和电压> 1000W时的速率。这些都是今天所面临的挑战。标准环氧树脂甚至Au/Si Eutectic Die附件在这些极端操作条件下都存在问题。最后,环氧造型化合物必须能够承受恶劣的条件并且不要破裂。这是一个持续的故事,讲述了半导体行业如何适应不断变化的需求。关键词硅碳化物(SIC),高压,高功率,高频,高性能
摩尔定律 — 集成电路芯片上的晶体管数量(1971-2018)摩尔定律描述了集成电路上晶体管数量大约每两年翻一番的经验规律。这一进步很重要,因为技术进步的其他方面(例如处理速度或电子产品的价格)都与摩尔定律有关。