真正的北方强大而自由!加拿大啊,我们从四面八方为你站岗。上帝保佑我们的土地光荣而自由!哦,加拿大,我们为你站岗,哦,加拿大,我们为你站岗。
doi: 10.25019/STR/2023.020 摘要 产品差异化和多样化是使公司产品与客户需求更加紧密结合的重要方法,同时可以提高价格、增加收入、提高盈利能力并增强竞争优势。使公司的产品与客户的需求和愿望紧密结合变得越来越重要。以客户为中心也是为了使公司的产品与客户需求保持一致,而客户体验有助于提高客户满意度。产品差异化描述了产品的改变,而产品多样化描述了为未开发的市场提供新产品,一些学者认为这是产品差异化的广泛形式。在促进产品差异化的同时,研究表明,通过差异化的产品供应可以从市场中获得更多支付意愿。此外,由于每个客户都能找到最能满足其需求的产品,因此销售量会增加。然而,品种过多会导致公司不经济,并增加复杂性成本。本文阐述了产品差异化的假设、动态和影响,以及随之而来对市场和市场定位的影响。结果表明,产品差异化并不总是符合理论假设,偏离理论最优品种数量会带来过度差异化的风险。 关键词 选择过剩;客户困惑;市场动态;市场结构;产品差异化;产品多样化 简介 市场已逐步从简单转向复杂、从稳定转向动态,最后从单一转向整体 (Neu & Brown, 2005)。因此,公司通过向客户提供更适合其需求的产品,变得更加以客户为中心 (Gebauer et al., 2011)。以客户为中心被视为公司生存和盈利的先决条件——它描述了将客户利益置于公司中心的努力 (Gummesson, 2008; Habel et al., 2020)。产品多样化和差异化是经常用于此目的的有用方法。客户需求也是产品多样化的原因之一,随着时间的推移,产品多样化显著增加(ElMaraghy 等,2013)。在自我一致性方面,选择性消费产品是展示某人身份的一种广受欢迎的方法(Sirgy,1982)。客户有机会在个性化产品变体中进行选择,并有机会订购单个定制产品,总结如下
Cybio,Cybi-Well Vario移液器和两个集成的CybiDrop分配器正在JGI生产测序系中实施,以取代两种老化的液压仪器和两个Cavro分配器。Vario一次性尖端25ul头部用于从Axygen PCR源板中等分的低体积放大DNA样品,并将1-4ul Dispense 1-4ul放入两个新的预装前的目的地板中。扫描源板以确认数据库的一致性,并“飞行”扫描目标板,以记录使用Cybi-Drop 3D分配(2-4ul)的前向或反向引物测序化学试剂。吞吐量的速度至少是我们当前的Hydra-Twister和手动加载Cavro仪器的两倍。
澳大利亚2。澳大利亚维多利亚州帕克维尔市墨尔本大学医学生物学系3. 分子医学部,哈里·珀金斯医学研究所,西澳大利亚州默多克,澳大利亚摘要背景:通过Adar酶将腺苷转化为RNA中的inosine insine insine酶,发生在人类转录组中的数千个地点,对于健康的大脑发育至关重要。 在许多神经精神疾病中,这种编辑过程失调,但尚未按单个神经元的水平进行大规模研究。 方法:我们在全长捕获核转录组中量化了RNA编辑位点,该位点的核转录组是来自六个神经型验尸后女性供体的六个皮质区域的3055个神经元的核转录组。 推定的编辑位点与包括健康和神经精神脑组织在内的散装人体组织转录组中的位点相交,并在无关脑供体的单个核中鉴定出的位点。 使用线性模型对细胞类型和皮质区域以及其中的各个位点和基因之间的差异编辑。 还测试了基因丰度与编辑之间的。 结果:我们在至少十个神经元核中鉴定了41,930个RNA编辑位点,具有可靠的读取覆盖率。 大多数站点位于内含子或3'UTR中的Alu重复序列中,并且在已发表的RNA编辑数据库中分类了约80%。 我们确定了9285个假定的新型RNA编辑位点,其中29%在无关供体的神经元转录组中也可检测到。 自闭症相关的基因富含预测可修饰RNA结构的编辑位点。澳大利亚维多利亚州帕克维尔市墨尔本大学医学生物学系3.分子医学部,哈里·珀金斯医学研究所,西澳大利亚州默多克,澳大利亚摘要背景:通过Adar酶将腺苷转化为RNA中的inosine insine insine酶,发生在人类转录组中的数千个地点,对于健康的大脑发育至关重要。在许多神经精神疾病中,这种编辑过程失调,但尚未按单个神经元的水平进行大规模研究。方法:我们在全长捕获核转录组中量化了RNA编辑位点,该位点的核转录组是来自六个神经型验尸后女性供体的六个皮质区域的3055个神经元的核转录组。推定的编辑位点与包括健康和神经精神脑组织在内的散装人体组织转录组中的位点相交,并在无关脑供体的单个核中鉴定出的位点。使用线性模型对细胞类型和皮质区域以及其中的各个位点和基因之间的差异编辑。。结果:我们在至少十个神经元核中鉴定了41,930个RNA编辑位点,具有可靠的读取覆盖率。大多数站点位于内含子或3'UTR中的Alu重复序列中,并且在已发表的RNA编辑数据库中分类了约80%。我们确定了9285个假定的新型RNA编辑位点,其中29%在无关供体的神经元转录组中也可检测到。自闭症相关的基因富含预测可修饰RNA结构的编辑位点。全球编辑率最强的相关性是SNORD115和SNORD116群集(15Q11)的snornas,该snornas已知可调节5-羟色胺受体加工并与ADAR2共定位。抑制性神经元比兴奋性神经元更高的总体转录组编辑。 此外,我们确定了在兴奋性神经元中优先编辑的29个基因和43个基因在包括RBFOX1,其靶基因的抑制性神经元中更严重,在自闭症相关的Prader-willi locus-Willi locus 15q11中,包括RBFOX1,其靶基因和小核仁RNA相关基因。 这些结果为1730个地点提供了细胞类型和空间上下文,这些位点在精神分裂症患者的大脑中差异化,自闭症患者中有910个部位。 结论:RNA编辑,包括数千个先前未报告的位点,在单个神经元核中可牢固地检测到,其中细胞亚型之间的基因编辑差异比皮质区域之间的差异更强。 抑制性神经元中自闭症相关基因的编辑不足可能在自闭症中这些细胞的特异性扰动中表现出来。抑制性神经元比兴奋性神经元更高的总体转录组编辑。此外,我们确定了在兴奋性神经元中优先编辑的29个基因和43个基因在包括RBFOX1,其靶基因的抑制性神经元中更严重,在自闭症相关的Prader-willi locus-Willi locus 15q11中,包括RBFOX1,其靶基因和小核仁RNA相关基因。这些结果为1730个地点提供了细胞类型和空间上下文,这些位点在精神分裂症患者的大脑中差异化,自闭症患者中有910个部位。结论:RNA编辑,包括数千个先前未报告的位点,在单个神经元核中可牢固地检测到,其中细胞亚型之间的基因编辑差异比皮质区域之间的差异更强。抑制性神经元中自闭症相关基因的编辑不足可能在自闭症中这些细胞的特异性扰动中表现出来。抑制性神经元中自闭症相关基因的编辑不足可能在自闭症中这些细胞的特异性扰动中表现出来。
幻影回声:五眼 SDA 实验,旨在检查 GEO 会合和近距离操作 Simon George、Andrew Ash 英国国防科学技术实验室 Travis Bessell 澳大利亚国防科学技术组 James Frith 美国空军研究实验室 Lauchie Scott 加拿大国防研发中心 Jovan Skuljan 新西兰国防技术局 Roberto Furfaro、Vishnu Reddy 美国亚利桑那大学 摘要 2020 年 2 月,两艘航天器在地球静止轨道 (GEO) 进行了首次商业卫星服务会合对接,为了解飞行器的动态并使用地面和天基传感器观察此类活动提供了独特的机会。作为更广泛活动的一部分,该活动旨在展示如何将盟军传感器和处理工具集成到基于云的联合处理工作流中,以提高盟军航天器在地球同步轨道的太空安全,在五眼联盟 (FVEYs) 国家国防科学技术 (S&T) 组织开展的受限观察活动中,服务飞行器和客户飞行器均被观察为替代目标。这项名为“PHANTOM ECHOES”的实验活动通过技术合作计划 (TTCP) 下开展的研究活动,汇集了英国、美国、加拿大、澳大利亚和新西兰的能力。本文概述了 PHANTOM ECHOES 活动第一阶段开展的活动;描述 FVEY 的空间领域感知 (SDA) 工具在数据处理网络基础设施中的开发和集成进展,以及任务扩展飞行器-1 (MEV-1) 从发射到 2020 年 2 月 25 日成功与 Intelsat-901 对接的真实世界和模拟观测结果。本文还介绍了 PHANTOM ECHOES 实验的第二阶段,该实验目前正在与任务扩展飞行器-2 (MEV-2) 任务一起进行,FVEY 的 SDA 科技界正在利用该实验来积累经验并探索深空的替代替代目标,这些目标呈现出与保护地球静止轨道盟军航天器相关的任务概况。 1. 简介 地球静止轨道 (GEO) 区域被各种各样的联盟航天器占据,它们为民用和军用目的的通信、监视和导航提供关键服务。虽然地球同步轨道 (GEO) 一直因其独特的轨道几何形状而备受推崇,但地球同步轨道 (GEO) 中常驻空间物体 (RSO) 数量的不断增加对飞行安全和关键高价值资产 (HVA) 的保护产生了相关影响。随着该地区人口密度的增加,有意近距离活动的能力也日趋成熟。此外,推进和自主能力的进步也
摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。
本工作论文描述了最初由Jackson and Victor(2015)开发的股票流量一致模型的扩展,以测试货币增长势在必行的存在。此处描述的扩展旨在模拟称为鲍莫尔的成本疾病的现象,该现象是由混合经济中的差异劳动生产率造成的。生产率增长较低的部门发现自己的工资成本上升而受到了无法被技术生产力提高所抵消的惩罚。工人的工资率低下,投资者的利润率降低威胁到释放社会和财务上的不可持续性。尽管如此,经济的这一部分,包括护理,手工艺和创造力等活动,对于追求人类的福祉而言至关重要,在过渡到可持续繁荣的过程中至关重要。
蒂姆也感谢Cilis的工作人员 - 凯瑟琳·泰勒(Kathryn Taylor),阿德·苏哈托(Ade Suharto),海伦·帕萨克(Helen Pausacker),泰莎·肖(Tessa Shaw)和维基·艾克(Vicky Aikman),为这本书提供了支持的机构基础。西蒙同样感谢悉尼大学法学院及其同事在亚洲和太平洋法中心的同事,无论是在综合方面还是鼓励了这一项目。该书的研究部分由蒂姆的联邦奖学金(项目no FF0668730)以及西蒙的澳大利亚研究委员会后博士奖学金(项目no DP110104287)和未来奖学金(Pro-ject no FT150100294)提供资金。我们都感谢牛津大学出版社邀请我们写它。我们还感谢Sri Astari Rasjid,因为她慷慨解囊,让我们能够在封面上使用她的令人回味的绘画“ Saraswati的新任务”。
在传播预测的输入之后,贝叶斯神经网络还可以不确定。这有可能通过拒绝低信心的预测来指导训练过程,而最近的变异贝叶斯方法可以在不进行蒙特卡洛重量的情况下这样做。在这里,我们在通过动物自然栖息地中通过被动声学监测设备进行的录音应用了无样品的野生动植物呼叫检测。我们进一步提出了不确定性吸引标签的平滑性,其中平滑概率取决于无样品的预测不确定性,以减少对损失值较少贡献的数据。我们介绍了一个记录在马来西亚婆罗洲的生物声学数据集,其中包含来自30种物种的重叠呼叫。在该数据集上,我们提出的方法在接收器操作特征(Au-Roc)下的面积约为1.5分,F1的13点和预期校准误差(ECE)的溶质百分比提高了约1.5点,与所有目标类别相比,预期校准误差(ECE)的位置为19.5点。
Simon Lebek 医学教授、FESC 在德国雷根斯堡完成了医学研究,在 Lars S. Maier 教授的指导下获得了博士学位。在那里,Lebek 博士专注于心肌功能和各种心血管疾病的潜在病理机制。在获得实验内科医学资格后,Lebek 博士加入了美国达拉斯 UT 西南医学中心 Eric N. Olson 教授的实验室,并获得了德国研究基金会 (DFG) 的 Walter Benjamin 奖学金的支持。在那里,他采用 CRISPR-Cas 基因编辑来破坏病理信号通路,作为治疗常见心血管疾病的策略。2023 年,Lebek 博士被 DFG 海森堡计划录取,这使他能够在雷根斯堡建立自己的独立研究小组。自 2024 年 4 月起,他一直担任雷根斯堡大学医院的内科、实验心脏病学和基因编辑教授。