1 型单纯疱疹病毒 (HSV-1) 可导致严重的眼部感染和失明。我们之前已证明 HSV-1 VC2 疫苗株在小鼠和豚鼠受到 HSV-1 或 HSV-2 阴道攻击后可保护它们免受生殖器疱疹感染。在本研究中,我们评估了小鼠在受到致命人类临床菌株 HSV-1(McKrae) 眼部攻击后,肌肉内接种 VC2 疫苗对疱疹性角膜炎的疗效。与亲本菌株 HSV-1(F) 相比,小鼠接种 VC2 疫苗可产生更好的保护作用和发病率控制。具体而言,在受到 HSV-1(McKrae) 眼部攻击后,所有接种 VC2 疫苗的小鼠均存活,而接种 HSV-1(F) 疫苗的小鼠中有 30% 和模拟接种疫苗的小鼠中有 100% 在攻击后死亡。接种 VC2 的小鼠没有表现出任何眼部感染症状,并且完全从最初的结膜炎中恢复。相反,接种 HSV-1(F) 的小鼠患上了时间依赖性的进行性角膜炎,其特征是角膜混浊,而模拟接种的动物表现出更严重的基质性角膜炎,其特征是免疫细胞浸润和角膜基质中的新生血管形成,并伴有角膜混浊。与模拟或 HSV-1(F) 接种组相比,VC2 免疫小鼠的角膜表现出 CD3 + T 淋巴细胞浸润显著增加,Iba1+ 巨噬细胞浸润减少。攻击后,VC2 免疫产生的病毒中和滴度高于 HSV-1(F)。此外,在眼部 HSV-1 (McKrae) 攻击后,VC 疫苗接种显著增加了引流淋巴结中的 CD4 T 中枢记忆 (TCM) 亚群和 CD8 T 效应记忆 (TEM) 亚群,随后是模拟或 HSV-1(F) 疫苗接种。这些结果表明 VC2 疫苗接种在攻击部位产生保护性免疫反应,以防止 HSV-1 引起的眼部发病。
摘要。有限简单群理论是一个(尚未开发的)领域,可能会提供有趣的计算问题和在密码学环境中有用的建模工具。在本文中,我们回顾了有限非阿贝尔简单群在密码学中的一些应用,并讨论了该理论明显占主导地位的不同场景,提供了相关定义,使密码学家和群论学家都能理解这些材料,希望能够促进这两个(非分离的)社区之间的进一步互动。特别是,我们研究了基于各种群论因式分解问题的构造,回顾了群论哈希函数,并讨论了使用简单群的完全同态加密。在此背景下还简要讨论了隐藏子群问题。
1 Instituto Agronômico (IAC), Centro de Grão e Fibra, Campinas, SP, Brasil 2 Embrapa Trigo, Passo Fundo, RS, Brasil 3 Syngenta Proteção de Cultivos LTDA, São Paulo, SP, Brasil 4 Embrapa Soja, Londrina, PR, Brasil Corresponding author: V. Carpentieri-Pipolo电子邮件:valeria.carpentieri-pipolo@embrapa.br genet。mol。res。22(3):GMR19145于2023年3月8日收到2023年6月29日,于2023年8月24日发表doi http://dx.doi.org/10.4238/gmr19145摘要。kunitz胰蛋白酶抑制剂(KTI)影响蛋白质的消化率和脂氧合酶同工酶(负责与大豆基食品相关的异味)是大豆种子中存在的两个不良因素。这些不愉快的因素通常被热处理灭活。但是,热处理并不能完全消除这些因素。此外,它可能会降低蛋白质溶解度,并可能产生额外的能源成本。遗传消除这些因素可能是热处理的替代方法。这项研究旨在选择种子中没有KTI和Lipoxygoganase同工酶的大豆线。通过越过BRS 213品种,该品种显示出低脂氧合酶活性,而BRS 155(KTI缺乏品种),获得了研究中的种群。f 2:3杂种种群被选择并使用DNA标记来分析,以鉴定编码KTI和三种脂氧合酶(LOX1,LOX2和LOX3)的隐性等位基因。f 2:3隔离人群通过KTI特异性标记成功识别,效率为100%。但是,
氧化磷酸化,电子传输链(ETC)和三磷酸腺苷(ATP)合酶的联合活性已成为抗生素治疗感染毒成菌和相关病原体的抗生素的宝贵靶标。在氧化磷酸化中,ET等建立了跨膜电化学质子梯度,从而为ATP合成提供动力。通过基于荧光素酶的ATP合成或测量氧气消耗的检测来监测氧化磷酸化可能在技术上具有挑战性且昂贵。这些局限性降低了这些方法在表征分枝杆菌氧化磷酸化抑制剂的效用。在这里我们表明,基于荧光的倒膜囊泡酸化(IMV)可以检测和区分抑制ETC的抑制,抑制ATP合酶和非特异性膜解偶联。在该测定中,来自smegmatis的IMV通过ETC或ATP合酶的活性酸化,后者对遗传进行了修饰,以使其充当ATP驱动的质子泵。通过9-氨基-6-氯-2-甲氧基因氨酸的荧光监测酸化,该酸氧化含量会在酸化的IMV中积聚和淬灭。非特异性膜解耦合器可防止琥珀酸酯和ATP驱动的IMV酸化。相比之下,ETC复合物III 2 IV 2抑制剂TelaceBEC(Q203)可防止琥珀酸驱动的酸化,但不能防止ATP驱动的酸化和ATP合酶抑制剂bedaquiline防止ATP驱动的酸化,但不能防止ATP驱动的酸化,但不能防止琥珀酸助长驱动的酸化。我们使用该测定法表明,正如先前提出的那样,兰索拉唑硫化物是复合物III 2 IV 2的抑制剂,而硫代嗪则是非特定于分枝杆菌膜的抑制剂。总体而言,该测定是简单,低成本且可扩展的,这将使其可用于识别和表征新的分枝杆菌氧化磷酸化抑制剂。
本文简要描述了自由能原理,从用朗之万方程表述随机动力系统开始,到可以解读为感知物理学的贝叶斯力学结束。它使用统计物理学的标准结果排练了关键步骤。这些步骤包括 (i) 基于从稀疏耦合动力学继承的条件独立性建立特定的状态划分,(ii) 用贝叶斯推理解开这种划分的含义,以及 (iii) 用最小作用变分原理描述特定状态的路径。从目的论上讲,自由能原理从最优贝叶斯设计和决策的角度提供了自组织的规范性解释,即最大化边际似然或贝叶斯模型证据。总之,从用随机动力系统描述世界开始,我们最终得到自组织作为可以解释为不证自明的感知行为的描述;即自组装、自创生或主动推理。© 2023 作者。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要许多细菌使用法定人数传感来控制生活方式的变化。该过程由微生物衍生的“自动诱导剂”信号分子进行调节,这些信号分子积聚在局部环境中。单个细胞感知自动诱导剂的丰度,推断人口密度并相应地改变其行为。在纤维霍乱中,磷光灯传递到转录因子luxo中,群体感应信号被转导。未磷酸化的Luxo允许HAPR的表达,从而改变了整体基因表达模式。在这项工作中,我们绘制了V. Cholerae中Luxo和Hapr的全基因组分布。尽管Luxo有一个小的法规,但HAPR目标32位。许多HAPR靶标与调节对碳饥饿的转录反应的CAMP受体蛋白(CRP)位点一致。这种重叠(在其他弧菌物种中也很明显)是由每个因子结合的DNA序列中的相似性引起的。在共享位点,HAPR和CRP同时接触双螺旋,并通过两个因素的直接相互作用稳定结合。重要的是,这涉及CRP表面,通常接触RNA聚合酶以刺激转录。因此,HAPR可以通过CRP阻止转录激活。因此,通过在共享位点进行交互,HAPR和CRP整合了来自法规传感和cAMP信号传导的信息以控制基因表达。这可能会使V.霍乱在水生环境和人类宿主之间的过渡过程中调节基因子集。
收件人:相关方 发件人:Anita Dunn 和 Mike Donilon 日期:2023 年 6 月 26 日,星期一 主题:拜登经济学正在改变失败的涓滴政策并改变我们的经济——并且受到绝大多数美国人的强烈支持 拜登总统在 2020 年竞选时承诺重建美国的中产阶级——并创建一个为长期被忽视和落后的家庭和社区服务的经济。 拜登总统在上任时就面临着迫在眉睫的经济危机,但他也意识到,仅仅回到疫情前的经济是不够的,这种经济带有数十年失败的涓滴政策的伤痕——在这种经济中,企业和富人获得大规模减税,而对美国人民的关键投资却被蚕食,工厂被关闭,好工作被转移到海外,整个社区被掏空,失去了希望和尊严,中产阶级生活的标志越来越遥不可及。这是国会共和党人至今仍在推行的经济议程。在总统签署防止灾难性违约的两党预算协议几周后,国会共和党人又开始为偏向富人和大公司的减税奠定基础,这将使赤字增加 3 万亿美元以上。总统上任时秉持着长期坚持的、根本不同的经济愿景——他决心翻开过去失败的涓滴政策的新篇章。两年后,有明确而有力的证据表明,拜登经济学既是一项取得成果的成功经济战略,也是绝大多数美国人大力支持的方法。拜登经济学植根于一个简单的理念,即我们需要从中部向外、从下往上发展经济——而不是自上而下。在这个经济中,我们在美国创造更多,赋予美国工人权力并对其进行投资,并促进竞争以降低工薪家庭的成本。实施这一经济愿景和计划——并果断地翻开涓滴经济时代的新篇章——一直是拜登总统任期内的决定性项目。周三,拜登总统将在芝加哥发表重要讲话,强调他的通过扩大中产阶级来发展经济的战略如何为美国人民带来利益。在未来的几周和几个月里,总统、内阁成员和政府高级官员将继续在全国各地奔走,直接向美国人民宣传拜登经济学和总统的“投资美国”议程,并呼吁那些想通过重拾过去失败的涓滴政策来拖累我们国家倒退的人。为了启动这一冲刺,拜登总统今天将宣布向所有 50 个州、领地和领地提供超过 400 亿美元的基础设施资金。以及哥伦比亚特区,让美国每个人都能享受到价格合理的高速互联网。就像富兰克林·德拉诺·罗斯福通过农村电气化法案将电力供应到美国的每个家庭一样,这一声明是拜登总统为全国工薪阶层和中产阶级家庭直接提供投资、就业和机会的更广泛努力的一部分。
摘要 仙人掌属植物(Opuntia ficus-indica (L.) Mill.)是能够耐受恶劣环境条件的最知名农作物之一。南非是少数拥有大量仙人掌种质资源的国家之一,这些种质资源代表了移地保护种群。然而,人们对该种群的遗传多样性知之甚少。此外,一些基因型在形态上不明显,因此,对于新手农民和研究人员来说,识别种质资源中的样本是一项挑战。本研究旨在使用八个简单序列重复 (SSR) 标记来区分和测量代表南非仙人掌种质资源的 44 个栽培品种的遗传多样性。显然,这些品种具有中等水平的多样性(平均多态性信息含量 PIC = 0.37,Nei 无偏基因多样性 = 0.42),可区分 90% 的品种。使用算术平均数 (UPGMA) 的非加权配对法对品种进行分析,发现主要分为三个聚类,而主坐标分析 (PCoA) 则显示,根据品种在农业中的用途,其聚类不明显。
演讲tm:揭示糖基化和免疫之间的甜蜜真理,每个细胞的每个细胞都被称为聚糖的简单且复杂的碳水化合物覆盖(图1A),其中大多数通过称为糖基化的过程与蛋白质或脂质绑定。这些细胞表面蛋白的巨大结构多样性,进化和丰度取决于细胞类型和状态,因此被认为是反映不同细胞特征的“细胞特征”(1,2)。已知糖基化与免疫系统的不同方面有关,例如T细胞生物学,对于T细胞受体(TCR)的激活和功能至关重要。 TCR是T细胞表面上的蛋白质,识别并结合了异物物质,例如病原体或毒素,在激活T细胞中起关键作用。 糖基化可以通过改变其构象和稳定性以及调节其与其他蛋白质的相互作用来影响TCR的激活和功能(3)。 已知 t细胞代谢受聚糖调节。 经历克隆膨胀或增殖的 T细胞需要改变代谢,以承受通过有氧糖酵解和谷氨酰胺溶解的核苷酸,氨基酸和脂质合成的生物能量需求的增加(4)。 t细胞活化还上调了葡萄糖代谢的一个成分的己糖胺途径,以增加核苷酸糖供体底物UDP-GlcNAC。 此途径是N-糖基化,O-glcnacylation和糖氨基氨基聚糖的产生所必需的,这是功能性T细胞的要求(5)。糖基化与免疫系统的不同方面有关,例如T细胞生物学,对于T细胞受体(TCR)的激活和功能至关重要。TCR是T细胞表面上的蛋白质,识别并结合了异物物质,例如病原体或毒素,在激活T细胞中起关键作用。糖基化可以通过改变其构象和稳定性以及调节其与其他蛋白质的相互作用来影响TCR的激活和功能(3)。t细胞代谢受聚糖调节。T细胞需要改变代谢,以承受通过有氧糖酵解和谷氨酰胺溶解的核苷酸,氨基酸和脂质合成的生物能量需求的增加(4)。t细胞活化还上调了葡萄糖代谢的一个成分的己糖胺途径,以增加核苷酸糖供体底物UDP-GlcNAC。此途径是N-糖基化,O-glcnacylation和糖氨基氨基聚糖的产生所必需的,这是功能性T细胞的要求(5)。糖基化也是可能影响蛋白质的免疫原性的一个因素,该因素受到多种因素的影响,包括其结构和抗原决定因素的存在。将糖添加到蛋白质中时,可能会改变蛋白质的形状和电荷,从而可能影响免疫系统识别为异物。这可能会影响免疫系统对疫苗产生抗体和记忆细胞产生抗体和记忆细胞的能力,从而影响其有效性。T细胞表面蛋白糖基化的变化也会影响细胞因子的产生,信号分子有助于协调免疫反应(6)。免疫系统必须能够区分自我和非自我,以便正常运行。此过程失败会导致自身免疫性疾病的发展。这可能导致一系列症状,具体取决于被攻击的组织。自我抗原的糖基化模式的变化可以改变其抗原决定因素,这可能会导致自身免疫性,如鼠模型中所观察到的那样(7,8)。
确定量子信道的容量是量子信息论中的一个基本问题。尽管有严格的编码定理来量化跨量子信道的信息流,但由于超加性效应,人们对其容量的理解甚少。研究这些现象对于深化我们对量子信息的理解非常重要,然而简单明了的超加性信道的例子却很少。在这里,我们研究了一类称为鸭嘴兽信道的信道。其最简单的成员是三元组信道,当与多种量子比特信道联合使用时,显示出相干信息的超加性。高维家族成员与擦除信道一起使用时表现出量子容量的超加性。受配套论文 [ 1 ] 中提出的“自旋对准猜想”的影响,我们关于量子容量超加性的结果扩展到了低维信道以及更大的参数范围。特别是,超加性发生在两个弱加性信道之间,每个信道本身都具有很大的容量,这与之前的结果形成了鲜明的对比。值得注意的是,单一、新颖的传输策略在所有示例中都实现了超可加性。我们的结果表明,超可加性比以前想象的要普遍得多。它可以发生在各种各样的通道中,即使两个参与通道都具有很大的量子容量。