David J. Huggins*剑桥大学,TCM集团,Cavendish实验室,19 J J J Thomson Avenue,Cambridge CB3 CB3 0HE,英国联合王国联合国联合国联合国中心,剑桥大学,剑桥大学,剑桥大学,剑桥大学,英国CB2 CB2 CB2 1EW,英国djh210@cam.ac.uk C. bio divem c. of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom philip.biggin@bioch.ox.ac.uk This author declares no conflict of interest Marc A. Dämgen Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom marc.daemgen@bioch.ox.ac.uk This author declares no conflict of interest Jonathan W. Essex School of南安普敦大学化学,南安普敦SO117 1BJ,英国救生科学研究所,南安普敦大学,南安普敦,SO17 1BJ,英国,英国J.W.essex@soton.acton.ac.ac.uk。 9JT,英国s.a.harris@leeds.ac.uk,该作者没有宣布的利益冲突Richard H. Henchman曼彻斯特生物技术学院,曼彻斯特曼彻斯特大学,曼彻斯特大学131号,曼彻斯特大学,M1 7dn,英国曼彻斯特化学学院M1 7dn,曼彻斯特,曼彻斯特,诺斯特郡,诺斯特,诺斯特郡,诺斯特。兴趣Syma Khalid化学学院,南安普敦大学,南安普敦SO17 1BJ,英国生命科学研究所,南安普敦大学,南安普敦SO17 SO17 1BJ,英国
允许将本工作的全部或一部分供个人或课堂使用的数字或硬副本授予,而没有费用,只要副本不是盈利或商业优势,并且副本带有此通知和首页上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新出版以在服务器上发布或重新分配到列表,需要事先特定的许可和/或费用。请求权限从permissions@acm.org。AutomotiveUI '18兼职,2018年9月23日至25日,加拿大安大略省多伦多©2018版权所有由所有者/作者持有。出版权许可获得ACM的权利。ACM 978-1-4503-5947-4/18/09…$ 15.00 https://doi.org/10.1145/3239092.3267418ACM 978-1-4503-5947-4/18/09…$ 15.00 https://doi.org/10.1145/3239092.3267418
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
摘要。在本文中,我们提出了一种通过将传统 CFD 求解器与我们的 AI 模块集成来加速 CFD(计算流体动力学)模拟的方法。所研究的现象负责化学混合。所考虑的 CFD 模拟属于一组稳态模拟,并使用基于 OpenFOAM 工具箱的 MixIT 工具。所提出的模块被实现为 CNN(卷积神经网络)监督学习算法。我们的方法通过为模拟现象的每个数量创建单独的 AI 子模型来分发数据。然后可以在推理阶段对这些子模型进行流水线处理以减少执行时间,或者逐个调用以减少内存需求。我们根据 CPU 或 GPU 平台的使用情况检查所提出方法的性能。对于具有不同数量条件的测试实验,我们将解决时间缩短了约 10 倍。比较基于直方图比较法的模拟结果显示所有数量的平均准确率约为 92%。
在过去的几十年中,在优化内部效率方面已经花费了很多公司努力,旨在降低成本和竞争力。尤其是在过去的十年中,已经达成共识,不仅是公司的共识,而且适合其合适的整个供应链,都可以为任何企业的成功或失败而呼应。因此,供应链分析工具和方法论越来越重要。在所有工具中,播放纸是迄今为止使用最广泛使用的SceNario分析技术。其他技术,例如优化,仿真或两者(模拟优化)是深入分析的替代方法。虽然基于电子表格的分析主要是一种静态确定性方法,但仿真是一种动态 - 策略工具。本文的目的是比较基于电子表格的基于电子表格的工具,显示了使用这两种不同的APARACH对真实(但简化)供应链案例研究的影响的影响。
如今,为了满足人类的能源需求,对一次能源和二次能源的需求一直在增加。近年来,太阳能电池已被用作生产可再生、可持续和无污染能源的替代品。各种材料已被用作电池中的传输层。TIO2 是这些材料之一,已被广泛用作电子传输层,但目前,ZnO 是另一种重要材料。比 TIO2 的使用更晚。此外,钙钛矿太阳能电池是属于纳米家族的新一代太阳能电池。目前,钙钛矿太阳能电池 (PSC) 是电子工业中一种很有前途的电池,因为它具有高功率转换效率,以及制造硅太阳能电池的相对较低的成本,以及导致钙钛矿在不同类型的基板上使用的灵活性。此外,石墨烯作为光伏能量转换最重要的基本光伏材料已经出现并得到使用。石墨烯在太阳能电池的构造中用作透明电极、层间活性层、电子和空穴传输层或电子和空穴分离层。在本文中,目标是找到太阳能电池中功率转换效率最高的最佳结构,我们将进一步看到,通过使用钙钛矿、ZnO 和石墨烯,我们将以较低的制造成本实现 16% 的功率转换效率。
摘要。宽场成像仪(WFI)是高能天体物理学的高级望远镜(雅典娜)的两种焦平面仪器之一,ESA的下一个大型X射线天文台计划于2030年代初发射。当前的基线光环轨道在L2左右,并且正在考虑太阳 - 地球系统的第二个Lagrangian点。对于潜在的光环轨道,辐射环境,太阳能和宇宙质子,电子和Heions都将影响仪器的性能。对仪器背景的进一步关键贡献是由未关注的宇宙硬X射线背景产生的。重要的是要了解和估算预期的工具背景并研究措施,例如设计模式或分析方法,这可以改善预期的背景水平,以达到具有挑战性的科学要求(<5×10 - 3计数∕ cm 2 ∕ cm 2 kev kev s s in 2至7 kev)。通过考虑到L2处的质子通量的新信息,可以改善Geant4中进行的WFI背景模拟。此外,已对WFI仪器的模拟模型及其在Geant4模拟中采用的周围环境进行了完善,以遵循WFI摄像机的技术开发。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.3.034001]
摘要:Monte Carlo(MC)是研究散射媒体中光子迁移的强大工具,但很耗时以解决反问题。为了加快MC模拟的速度,可以将缩放关系应用于现有的初始MC模拟,以生成具有不同光学属性的新数据集。我们命名了这种方法基于轨迹,因为它使用了初始MC模拟的检测到的光子轨迹的知识,这与基于较慢的光子方法相反,在这种方法中,新型MC模拟具有新的光学特性。我们研究了缩放关系的收敛性和适用性限制,这两者都与所考虑的轨迹样本也代表了新的光学特性有关。为了吸收吸收,缩放关系包含平滑收敛的兰伯特啤酒因子,而对于散射,它是两个快速分化因子的乘积,其比例很容易达到十个数量级。我们通过研究给定长度的轨迹中的散射事件数量来研究这种不稳定。我们根据记录的轨迹中的最小最大散射事件进行了散射缩放关系的收敛测试。我们还研究了MC模拟对光学性质的依赖性,这在反问题中最关键,发现散射衍生物归因于小泊松分布的散射事件分布的小偏差。本文也可以用作教程,有助于理解比例关系的物理学与其局限性的原因,并制定了应对它们的新策略。
Nathan Shammah,Riken - 量子技术的开源科学计算:QUTIP 2019年1月26日 - 美国伯克利实验室,美国
指导和指导者:Ann Almgren、Don Willcox、Weiqun Zhang、Aaron Lattanzi 计算科学与工程中心 (CCSE)、AMCR 部门、伯克利实验室