摘要 — 航空工业中使用的电子系统通常被概括为航空电子设备。大约七十年前,飞机上使用的第一批航空电子设备是基于旧仪表和模拟系统的导航和通信系统。从那时起,该行业已经发展了很多,今天的航空电子系统需要新的和更智能的功能,从而推动整个航空研究以指数级的速度向高级航空电子系统和架构发展。在本文中,对航空电子系统在不同发展阶段的成熟度进行了全面调查。在这个项目中,考虑了四个 LRU,每个 LRU 具有不同的输入参数和不同的采样时间。根据时间采样,数据阵列以串行方式发送,没有任何时间延迟。一旦数据数组作为输出发送出去,它就会进入由数据集中器和推理器组成的嵌入式系统。数据在这里收集,然后通过数据总线发送到微控制器,最后输出显示在 PC 上。Mathwork SIMULINK 可用于编码部分,算法由 Simulink 模块集实现。根据给予每个 LRU 的输入信号在示波器模块集上查看输出。将输出与所需输出进行比较。
HYPERSIM 提供直观的、基于 Windows 的软件界面,使工程师能够构建复杂的拓扑结构并快速解决操作和可靠性问题。用户可以直接从 Simulink 导入模型,也可以使用丰富的组件库创建新模型。HYPERSIM 包括一个高级建模工具,其中包含一个包含 300 多个经过验证的电力系统组件和控制器的丰富库,使用户能够设计仿真模型。
摘要:微电网的重要性已被直接电流(DC)微电网的研究量增加所承认。主要原因是简单的结构和有效的性能。在这篇研究文章中,已经提出了双积分滑动模式控制器(DIMC)用于涉及可再生能源和混合储能系统(HESS)的能源收集和直流微电网管理。DIMC比传统的滑动模式控制器提供了更好的动态响应和减少的颤动。在第一阶段,得出了网格的状态差异模型。然后,为PV系统和混合储能系统提出了非线性控制定律,以实现DC链路上电压调节的主要目标。在后面的部分中,使用Lyapunov稳定性标准证明了系统的渐近稳定性。最后,提供了能源管理算法,以确保DC微电网在安全操作限制内的平稳运行。通过在MATLAB/SIMULINK软件上实现并与滑动模式控制和Lyapunov重新设计进行比较,通过在MATLAB/SIMULINK软件上实现了拟议的系统的有效性。此外,为了确保所提出的控制器对该方案的实际生存能力,已在实时硬件式测试工作台上进行了测试。
6 实施 35 6.1 线性 MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
摘要——航空工业中使用的电子系统通常被概括为航空电子设备。大约七十年前,飞机上使用的第一批航空电子设备是基于旧仪表和模拟系统的导航和通信系统。从那时起,该行业已经发生了很大的发展,如今航空电子系统需要新的和更智能的功能,从而推动整个航空研究以指数级的速度向高级航空电子系统和架构发展。在本文中,对航空电子系统在不同发展阶段的成熟度进行了全面调查。在这个项目中,考虑了四个 LRU,每个 LRU 具有不同的输入参数和不同的采样时间。基于时间采样,数据数组被串行发送而没有任何时间延迟。一旦数据数组作为输出发送出去,它就会进入由数据集中器和推理器组成的嵌入式系统。数据在这里收集,然后通过数据总线发送到微控制器,最后输出显示在 PC 上。 Mathwork SIMULINK 可用于编码部分,算法通过 Simulink 模块集实现。根据提供给每个 LRU 的输入信号,在示波器模块集上查看输出。将输出与所需输出进行比较。
part-B:使用Scilab/Matlab/simulink或LabView1。模拟NRZ,RZ,半鼻涕和凸起的余弦脉冲,并生成二进制极性信号传导的眼图。2。模拟脉冲代码调制和解调系统,并显示波形。3。模拟QPSK发射器和接收器。绘制信号及其星座图。4。通过模拟二进制DPSK的非连锁检测来测试二进制差分相移键系统的性能。
摘要:在过去的几十年中,砂拉越农村地区的长屋社区已经经历了电力供应的局限性。由于砂拉越的地理,从公用电网到传输线向这些农村地区的供电也只会导致许多损失,因此利用太阳能作为主要来源的启动是有利的解决方案。将实现该领域的直流微电网系统,因为太阳能光伏系统是为Longhouse社区中电器产生电气供应的DC来源。然而,砂拉越的热带气候和地理位置,例如太阳辐射不一致,温度变化,高湿度和大雨将是实施太阳DC微电网系统的主要约束。因此,本文提出了一项有关直流微电网配置电压分布的全面研究,以研究系统的可靠性和效率。使用MATLAB Simulink设计了DC微网格模型的配置,并且还为验证目的而开发了一个实验性呈现Simulink的实验。获得的仿真和实验结果证实,与径向系统相比,具有多种源系统的环形系统的拟议配置在不同总线的直流电压分布方面更可靠,更有效。因此,根据每个总线的电压分布,提出的配置更可靠。
近年来,四旋翼飞行器控制设计研究迅速增多。四旋翼飞行器的线性控制器设计已在多项工作中实现,如线性二次调节器 (LQR) 和比例积分微分 (PID) (Khatoon 等人,2014) (Reyes-Valeria 等人,2013)。非线性控制设计也已通过不同的技术实现,如反步法 (Das 等人,2009)、滑模 (Runcharoon 和 Srichatrapimuk,2013) 和反馈线性化 (Saif,2009)。(Castillo 等人,2005) 将非线性控制算法与 LQR 控制律的性能进行了比较。结果显示,线性控制器应用于非线性系统时,响应不稳定,而非线性控制器则显示稳定响应。(Gomes 等人,2016) 使用 AR.Drone 四旋翼飞行器和 Vicon 运动捕捉系统跟踪移动目标,并使用比例微分 (PD) 控制器进行线性定位。(Mashood 等人,2016) 展示了两架 AR.Drone 使用 VICON 系统和 MATLAB/SIMULINK 进行反馈和控制实现,沿平方路径飞行的实验结果。这可以通过 AR Drone Simulink 开发套件 (ARDSDK) 实现。(Campbell 等人,2012) 展示了四旋翼飞行器自动驾驶仪的设计和实现,使无人机能够起飞、从一个位置移动到另一个位置并降落在所需位置 -
近年来,四旋翼飞行器控制设计研究迅速增多。四旋翼飞行器的线性控制器设计已在多项工作中实现,如线性二次调节器 (LQR) 和比例积分微分 (PID) (Khatoon 等,2014) (Reyes-Valeria 等,2013)。非线性控制设计也已通过不同的技术实现,如反步法 (Das 等,2009)、滑模 (Runcharoon 和 Srichatrapimuk,2013) 和反馈线性化 (Saif,2009)。 (Castillo 等,2005) 将非线性控制算法与 LQR 控制律的性能进行了比较。结果表明,线性控制器应用于非线性系统时响应不稳定,而非线性控制器则表现出稳定的响应。 (Gomes 等人,2016) 使用 AR.Drone 四旋翼飞行器和 Vicon 运动捕捉系统跟踪移动目标,并使用比例微分 (PD) 控制器进行线性定位。 (Mashood 等人,2016) 展示了两架 AR.Drone 沿平方路径飞行的实验结果,使用 VICON 系统和 MATLAB/SIMULINK 进行反馈和控制实现。这可以通过 AR Drone Simulink 开发套件 (ARDSDK) 实现。 (Campbell 等人,2012) 展示了四旋翼飞行器自动驾驶仪的设计和实现,使无人机能够起飞、从一个位置转移到另一个位置并降落在所需位置。
• 将使用教科书 R.Erickson、D.Maksimovic、Fundamentals of Power Electronics(Springer 2001)的部分内容。教科书可从校园网上在线获取 • MATLAB/Simulink、LTSpice、Altium Designer;全部安装在 MK225 中并可在远程服务器上使用 • 课程网站上发布了讲座幻灯片和笔记、其他课程材料、预备实验、实验等 • 需要实验室套件(从电路商店购买)约 1-2 周 − 价格:每组 150-200 美元 − 根据需要购买额外的电阻器和电容器等 − 需要购买任何替换部件