压缩态的压缩分布到一组独立的光学模式上,是连续变量量子信息技术领域的重要量子资源 [1],例如单向量子计算 [2] 和量子通信 [3]。此外,多模压缩光在计量应用方面是一种很有前途的工具,特别是用于具有量子增强灵敏度的多参数估计 [4,5]。例子包括通过空间多模压缩实现量子成像 [6,7],以及利用时间/光谱多模压缩光实现远距离时钟的量子改进同步 [8]。上述广泛的潜在应用与不断增强的产生、控制和检测多模量子光的能力密切相关,这得益于空间光调制器、光频率梳、多像素探测器等光学技术的发展。压缩光通常通过放置在光学腔内的二阶非线性晶体中的参量下转换 (PDC) 获得,即所谓的光学参量振荡器 (OPO)。光学腔增强了非线性相互作用,并将压缩光限制为单个空间模式。通过利用光的不同自由度(例如时间/光谱 [ 9 ]、空间 [ 10 ] 和轨道角动量 [ 11 ]),可以产生多模压缩。然而,OPO 谐振腔将压缩带宽限制在谐振腔带宽内。产生宽带多模压缩的一种有前途的替代方法是使用单通 PDC 源,用脉冲激光器泵浦,该激光器在频域中具有光频梳 [ 12 ]。采用脉冲泵浦的单通设计可确保在 PDC 输出的每个脉冲上都维持压缩 [ 13 , 14 ]。基于非线性波导的单通
与超导体连接的抽象磁性材料披露了具有量子技术潜力很大的新型物理现象。将分子用作磁成分已经表现出巨大的承诺,但是分子领域提供的大量特性仍然在很大程度上没有探索。在这里,我们研究了在亚单层覆盖范围内沉积在超导铅表面上的单个分子磁铁(SMM)。这种组合揭示了超导体(SC)对SMM的自旋动力学的强烈影响。表明,向冷凝水状态的超导过渡将SMM从阻塞的磁化状态转换为谐振量子隧穿态度。此结果为通过SCS和使用SMM作为超导状态的局部探针提供了控制SMM磁性的观点。
ene编辑提供了临床验证的潜力,可以治疗多种遗传疾病,而这些遗传疾病几乎没有治疗方法。由于通过基因编辑对大多数遗传疾病的研究和治疗需要在体内进行编辑,因此在临床上相关的方法,可以在哺乳动物1中有效地传递精确基因编辑剂到组织中的有效递送,而2继续在进步中发挥关键作用。腺相关病毒(AAV)已用于在人类疾病3,4的动物模型3中输送许多编码许多治疗蛋白的基因。AAV已成为一种人口递送方法,其靶向各种临床相关的组织以及相对良好的安全性和有利的安全性。基础编辑器8,9在体外和人类遗传疾病的动物模型中,有效地安装了针对性的过渡突变1,10。与核酸酶介导的基因编辑不同,碱基编辑不需要双链DNA断裂,因此产生了最小的不需要的indel副产物,染色体易位,染色体易位11,染色体非整倍型12,大deletions 13,14,p53激活15,16和Chromothripsis 17。基本编辑器最近进入临床试验,通常太大而无法适应单个AAV,该AAV的货物尺寸限制约为4.7 kb,不包括倒置的终端重复序列(ITRS)18,19。除了基本编辑器本身外,提供基本编辑器的AAV还必须包括指导RNA,启动器驱动基本编辑器和单个指南RNA表达以及顺式调节元素。
朱利安·兰伯特(Julien Lambert),卡拉·莱特 - 费尔南德斯(Carla Lloret-Fernández),露西·拉普兰(Lucie Laplane),理查德·普尔(Richard Poole),索菲·贾里亚特(Sophie Jarriault)。关于秀丽隐杆线虫中单细胞模型的天然可塑性的起源和概念框架的起源和概念框架。线虫发展与疾病模型,144,Elsevier,第111-159、2021页,当前发育生物学的主题,978-0-0-12-816177-7。10.1016/bs.ctdb.2021.03.004。hal-03450893
氮化硅 a-Si x N y :H 接触蚀刻停止层通过作用于初始电荷损失现象,强烈影响单多晶硅非挥发性存储器中的数据保留性能。其改进需要通过实验设计方法分析流入等离子体增强化学气相沉积工艺参数。a-Si x N y :H 物理电学分析指出,必须避免富含硅的成分,尤其是其界面层,以减少 a-Si x N y :H 电荷量,从而提高数据保留率。事实上,a-Si x N y :H 靠近浮栅,其电荷调制可以充当寄生存储器,通过电容效应屏蔽浮栅中存储的电荷。© 2009 美国真空学会。DOI:10.1116/1.3071846
本文介绍了在龙骨项目框架下开发的高速近红外单光子检测器(空间量子源分布的技术开发,ESA ARTES C&G计划)。基于在Geiger模式下运行的GHz门控雪崩光电二极管,该检测器提供紧凑性,毛皮和冷却能力,无维护操作和高速单光子检测性能。这些高性能使其非常适合极低的光级检测应用,例如太空式量子通信,卫星激光范围,绕行空间碎片光学跟踪和远程激光雷达。本文详细介绍了系统的体系结构和性能指标,涵盖了量子效率,深度计数率,时间抖动,最大计数率,时间窗口宽度以及螺栓效率的概率。实质性增强。
化学基因筛选是探索癌细胞对药物的反应如何受其突变影响的有力工具,但它们缺乏从分子层面观察单个基因对暴露反应的贡献。在这里,我们介绍了 sci-Plex- G ene-by- E nvironment(sci-Plex- G x E),这是一个结合单细胞基因和化学筛选的大规模平台。我们通过确定 522 种人类激酶中的每一种对胶质母细胞瘤对不同药物的反应的贡献来强调大规模、无偏筛选的优势,这些药物旨在消除受体酪氨酸激酶途径的信号传导。总的来说,我们在 1,052,205 个单细胞转录组中探测了 14,121 种基因与环境的组合。我们鉴定了一种以 MEK/MAPK 依赖的方式调节的补偿性自适应信号的表达特征。旨在防止适应的进一步分析表明,有前景的联合疗法,包括双重 MEK 和 CDC7/CDK9 或 NF-kB 抑制剂,是防止胶质母细胞瘤转录适应靶向治疗的有效手段。
[A] Strasbourg大学,CNRS,ICPEES UMR 7515,67087法国Strasbourg,法国[B] Strasbourg University of Strasbourg,CNRS,CNRS,ICS UPR 22,67000 Strasbourg,法国,法国,CNR,CNRS,CNRS,CP2M 51128,dille fille fille fille fille CNRS,IPCMS UMR 7504,F-67034法国Strasbourg,法国[E] Mulhouse大学,CNRS,CNRS,IS2M,UMR 7361,15 Jean Starcky,Mulhouse 68057,法国法国[F] Cemistry [f] Cemistry of Chemistry of Chemistry of Chemistry of Chemistry of Chemistry,Lomonosov Moscow State9999999999999999999999.361,119999。莫斯科,俄罗斯摘要
在生物学研究的动态领域中,我们目睹了一个变革性的时代,重新掌握了我们对细胞功能,发育过程和疾病复杂性的掌握。这一科学文艺复兴时期的核心是单细胞(SC)基于OMICS的分析,包括单细胞多组合的领先技术,以及基于创新的干细胞方法。这些技术已经催化了一系列发现,为我们寻求知识和彻底改变了科学研究的景观开辟了新的边界。干细胞的探索标志着这一旅程中重要的一章。以其显着的自我更新和分化能力而闻名,干细胞对于维持组织平衡和增生至关重要。对它们的性质和生物过程的这种更深入的了解不仅提高了再生医学领域,而且还引入了潜在的治疗策略来打击各种疾病,为全球提供了新的希望和治疗可能性。此外,将体细胞重编程为多能干细胞的过程是特别引人注目的进步。该技术可以通过从患者或基因工程中得出细胞来反映特定疾病,从而创建各种疾病模型,从而提供了一种强大的工具来以更加个人和精确的水平探索疾病机制。对干细胞生物学和疾病建模的这种见解展示了一个有希望的突破性领域,以前比作科学领域。Zhang等。Zhang等。它还改善了药物筛查方法,从在单一细胞上测试候选药物到在复杂的组织上测试具有许多类型的细胞在一起的复杂组织,它们可以更好地模拟体内的真实病理状况。本评论的研究主题探讨了SC-Ser-sequesting技术的变革性影响,尤其是它们扩展到SC-Multiomics,使用干细胞作为推进疾病理解,诊断和药物发现的平台。应对药物开发的持续挑战,例如成功率低
患有艾滋病毒(PLWH)的人有带状疱疹(Hz)的高风险。欧洲药品局(EMA)于2018年批准的重组抗HZ疫苗(RZV)已被证明在PLWH中有效且安全。本研究旨在描述在我们中心的RZV实施。在2022年1月至2023年10月之间,在意大利米兰圣拉法尔医院的传染病病房中对PLWH的前瞻性队列研究。建立三个优先标准,用于通过在常规艾滋病毒医疗就诊期间立即提供现场疫苗接种来确定PLWH之间的三组并实施主动方法。确定的三个优先级标准的年龄大于65岁,PLWH至少有一个Hz的发作,而PLWH的CD4+ T淋巴细胞计数<200细胞/microl。在599 PLWH接种疫苗中,287(48%)属于优先组。优先级策略促进了免疫计划。不同的实施策略显示出不同程度的成功程度。常规HIV体检期间的现场疫苗接种和特定组的优先次序是增加疫苗摄取的有效策略。我们认为,积极进取的临床医生与个人之间的合作为预防机会铺平了道路。由于引入了新的疫苗,这些方法对于确保有效预防至关重要。