神经发生是大脑继续形成新神经元的概念。在拉蒙·卡贾尔(Ramon Cajal)进行的研究中,没有证据表明在采用没有新的神经元发展的思想中采用了大脑发育后,成人发展了新神经元(4)。然而,这种思想以约瑟夫·阿特曼(Josef Atman)在成年大鼠中的神经发生结束(4)。在人类中,已经对两个可能的神经发生区域进行了研究:嗅球和海马。使用特定生物质体进行发育神经元的研究已被用来支持人类成年神经发生的想法。然而,这些生物元化的存在,但在未成熟的神经元中也造成了困难(5)。为了了解神经发生在大脑可塑性中的作用,它可能需要开发更具体的生物质体,以将新生神经元与无关的神经元区分开(2)。
1 Kahramanmaraş22 Erciyes大学医学院,凯耶里(Kayeri通过视光盘描述的神经发育障碍,无论性别或种族如何,异常小。 成像方法经常用于诊断。 在我们的病例中,一名17岁的男性患者,由于左眼偏差而来到诊所,检查显示左眼的视神经发育不全。 在发育不全中,报告的病例可能包括严重的中枢神经系统(CNS)畸形。 但是,我们建议对这些独特儿童进行定期系统检查以及职业康复,父母教育和流动性培训。 关键词:视神经的下降,偏见性视神经异常,视神经optik sinir hipoplazisi; olgu sunumusunumuözetoptik sinir hipoplazisi sinir hipoplazisi cinsiyet cinsiyet birnörogelişimselbozukluktur。 tanıdaGörüntülemeiyöntemlerisıklıklaKullanılmaktadır。 Olgumuzda 17yaşındaErkekhasta sol solgözündekayma ilekliniğebaşvurdu,yapılanmuayenedesol sol solgöözdeeoptik optik sinir sinir sinir hipoplazisisaptandı。 Optik Sinir Hipoplazisinde,Bildirilen vakalar ciddi santral sinir sistemi(SSS)Malformasyonlarınıiçerebilir。 ancakbuçocuklariçinMeslekiMesleki Rehabilitasyon,ebeveyneğitimive hareketeğitimiile birlikte periyodik sistemik sistemik sistemikmuayeneleriönermekteyiz。Kahramanmaraş22 Erciyes大学医学院,凯耶里(Kayeri通过视光盘描述的神经发育障碍,无论性别或种族如何,异常小。成像方法经常用于诊断。在我们的病例中,一名17岁的男性患者,由于左眼偏差而来到诊所,检查显示左眼的视神经发育不全。在发育不全中,报告的病例可能包括严重的中枢神经系统(CNS)畸形。但是,我们建议对这些独特儿童进行定期系统检查以及职业康复,父母教育和流动性培训。关键词:视神经的下降,偏见性视神经异常,视神经optik sinir hipoplazisi; olgu sunumusunumuözetoptik sinir hipoplazisi sinir hipoplazisi cinsiyet cinsiyet birnörogelişimselbozukluktur。tanıdaGörüntülemeiyöntemlerisıklıklaKullanılmaktadır。Olgumuzda 17yaşındaErkekhasta sol solgözündekayma ilekliniğebaşvurdu,yapılanmuayenedesol sol solgöözdeeoptik optik sinir sinir sinir hipoplazisisaptandı。Optik Sinir Hipoplazisinde,Bildirilen vakalar ciddi santral sinir sistemi(SSS)Malformasyonlarınıiçerebilir。ancakbuçocuklariçinMeslekiMesleki Rehabilitasyon,ebeveyneğitimive hareketeğitimiile birlikte periyodik sistemik sistemik sistemikmuayeneleriönermekteyiz。关键字:光神经发育不全,先天性光神经异常,光神经
在过去的十年中,人工智能(YZ)和机器学习(BC)的使用有所增加。的最新发展导致对不同领域的脑电图(EEG)的使用兴趣。在医学和生物医学应用中,例如分析心理工作量和疲劳,识别脑肿瘤以及中枢神经系统疾病的康复;从临床应用到脑大氨酸界面和机器人应用,基于EEG的运动分析和分类广泛用于许多领域。本文回顾了EEG信号处理中使用的许多MS算法的应用,并介绍了广泛使用的算法,典型的应用程序方案,重大进展和现有问题。在研究中,研究了脑电图中现有的MS,包括脑部计算机界面,认知神经科学,诊断脑疾病和包括不同受试者在内的不同受试者。首先,简要描述了EEG信号处理中使用的MS算法的基本原理,包括Evolution神经网络,支持向量机,K-AT K-EEG K-EEG附近的K-EEG,神经网络。还介绍了一项关于脑电图分析中使用的MS应用的一般研究。结果,确定在研究中使用了最多的DVM和CNN方法,并且工作头主要在癫痫,BCI和酒精,睡眠和感知中进行。
英国研究人员卡顿(1)在1875年设法测量了兔子和猴子大脑中的自发电活动,1924年,德国神经精神病学家汉斯·伯格(Hans Berger)首次通过人头皮肤获得了贝伊(Bey)的电记录。汉斯·伯杰(Hans Berger)于1929年发表了这项研究(2)。Hans Berger在第一批记录中定义了Alpha(8-13 Hz)和Beta(15-30 Hz)的波,并将此电气记录称为“脑电图”(EEG)。大脑中的神经细胞与电连接相互通信,并且在获取细胞记录时,可以测量突触后的抑制剂,退出器突触电位后出口并最终导致动作电位。当有效电极连接到头骨上并作为第二电极中的参考电极连接时,测量该电极下神经细胞的所有电气集体活性。这些记录在大脑头皮上拍摄的记录是不正确的复杂信号。这些信号取决于人类的瞬时大脑活动,时间,频率和拓扑差异。汉斯·伯格(Hans Berger)表明,即使在第一次记录期间,枕骨闭嘴,大脑的视觉区域,阿尔法波也有所增加。在Alpha和Beta波之后,1936年,Walter(3)定义了Delta(0.5-3.5 Hz)和TETA(4-7 Hz)波,所有频带在1938年被命名为Gamma波(4)。今天,在许多书籍中,这些频带已成为任务说明
近年来,神经科学领域神经活动成像和分析技术的快速发展帮助我们了解大脑神经网络中信息的处理方式。神经网络组织和功能的新方法及相关发展为以前看似难以治疗甚至无法治疗的神经系统疾病提供了新的解决方案。脑机接口或脑机接口 (BCI) 是一个新的研究领域,在过去 10-15 年间取得了快速进展。脑机接口领域的持续发展将产生许多新的实际应用以及全新的通信系统和医疗假肢,从而改善数千名患有运动和交流障碍人士的生活质量。土耳其在BBA领域的理论和实践研究都非常少。本研究提供了有关脑电图脑机接口 (EEG BCI) 及其发展的重要研究的信息。此外,还研究了EEG BCI领域的不同数据处理方法、不同电极布置策略、不同心理动作使用和不同接口。
经颅磁刺激是一种神经生理检查方法,由脊髓,周围神经或肌肉刺激的电位记录,通过中枢神经系统中的电路路径或运动皮质。这种方法允许研究导致皮质运动场刺激变化的疾病机理。同样,精神药物对皮质活性和侵略行为的电生理测量的影响。在精神病学领域,精神分裂症,强迫症,注意力缺陷多动障碍和药物滥用领域的经颅磁刺激和诊断研究集中在埃塞哥部发生的研究上。
• 发表日期 / 收到日期:2020 年 11 月 17 日 • 修改发表日期 / 收到修订版:2021 年 2 月 9 日 • 喀布尔日期 / 接受日期:2021 年 3 月 15 日 摘要 如今,建立具有可靠精度的质量控制系统对于生产零缺陷的工业产品非常重要。在这方面,相机控制系统采用可靠的控制算法是一个至关重要的问题。在本研究中,开发了一种使用模式匹配算法的实时控制算法,以使用人工神经网络 (ANN) 优化最小对比度参数。在本研究中,使用 LabVIEW 图像控制工具对模式匹配中包含的三种算法在时间方面的比较进行了比较。此外,还讨论了低差异采样算法中最关键的参数之一,它能及时给出良好的结果,即最小对比度参数。该参数的优化是通过使用ANN中的Levenberg-Marquardt训练算法来完成的。获得的结果表明,所提出的使用 ANN 优化最小对比度参数的模式匹配算法对于质量控制应用来说是快速且有效的。关键词:人工神经网络、模式匹配、金字塔匹配然后,控制系统中的控制算法即可完成。但是,该算法是控制算法的最佳选择,可以通过最小对比度参数 (YSA) 来优化该算法。使用 LabVIEW 的算法来控制 LabVIEW 的控制。Ayrıca, zaman açısından iyi sonuçlar veren düşük-tutarsızlık örnekleme algoritmasında enönemli parametrelerden biri olan minicontrast parametresi tarışılmıştır.参数优化 YSA'da Levenberg-Marquardt eğitim algoritması kullanılarak yapılmıştır。Kullanılan yöntem sayesinde, desen eşleştirmesinin hızlı ve etkili olduğu görülmüştür。Anahtar kelimeler : Yapay sinir ağı, Desen eşleştirme, Piramit eşleştirme
,由于包括入侵者在内的莫斯科夺取了一家剧院,在002进行的人质救援行动中死亡。安全部队在此操作中使用的瑞芬太尼和kardentanyls,尽管不是通过化学武器的合同将化学武器定义为化学武器,但丧生的人的过剩和这些化学物质会影响中枢神经系统引起了世界争议。在这项科学研究中,是否可以在化学武器类别中评估化学武器,芬太尼和芬太尼群的问题。尽管将芬太尼和亚组作为化学武器的评估是世界上的辩论问题,但国家首先通过自己的法律遵循这一事实,并且首先,他们不认为它是化学武器,这并不能使他们在此阶段将芬太尼及其衍生物视为化学武器。
大脑和中枢神经系统神经元对氧化应激敏感的事实是导致由氧化应激引起的神经模型产生疾病的重要原因。阿尔茨海默氏病和帕金森氏病,肌萎缩性的侧面sklezz疾病,例如其中最常见的。尽管针对这些疾病进行了过多的研究,但为脑组织创建氧化应激模型非常困难。原发性培养物中,原发性神经元会很困难,并且培养的连续性受到限制。这增加了体外细胞系模型的重要性。在这项研究中,形成了氧化应激模型,其过氧化氢对Luhmes细胞系,胚胎人神经元细胞系以及总抗氧化剂(TAS)(TAS)(TAS)(TAS)(TAS)(TAS)(TAS)的影响(TAS)的总抗氧化能力(TOS)。我们的结果表明了过氧化氢和模型的有效性的氧化作用。该模型被认为对下一步完成工作很有用。
不同神经系统疾病引起的脑部异常状况影响着全世界的许多人。这些异常情况之一是肌萎缩侧索硬化症 (ALS)。 ALS 是一种俗称运动神经元病的疾病,它因脑干区域运动神经细胞受损而导致进行性身体障碍。大脑感知外界刺激,通过注意机制从大量的感知刺激中选取相关的刺激。注意力是当各种类型的信息、情绪和思想等活动集中在一个区域并由大脑在所需的时间内选择相关刺激时发生的认知过程。脑电图(EEG)在测量和分析大脑注意力机制中发生的此类活动方面具有重要地位。注意力分析的最新研究集中在事件相关电位 (ERP) 信号上。 EIP 信号是小幅度信号,其中包含 P100、N200、P300 和 N400 等在 EEG 信号中不太明显的成分。因此,为了获得 EIP 信号,必须重复目标刺激并多次进行 EEG 记录。 EEP 信号是通过对记录的目标刺激的 EEG 信号进行平均而获得的。研究的目的是从 ALS 患者和健康个体的 ERP 信号中获取一些特征,并使用 k-均值聚类方法检查对视觉刺激的注意力的分析。使用K均值聚类法进行分析的结果显示,数据被分为2个聚类,计算出最高成功率为77.78%。