抽象的植物细胞经常遇到正常生长和发育的一部分,或响应诸如洪水等环境压力的一部分。近年来,我们对低氧反应基因表达的多层控制的理解已大大增加。在此更新中,我们对调节对低氧水平的反应的表观遗传,转录,翻译和翻译后机制进行了广泛的看法。我们强调了翻译后修饰(包括磷酸化),次级信使,转录级联反应以及来自线粒体和网状网状(ER)的逆行信号如何如何控制转录因子活性和低氧基因转录的控制。我们讨论了通过专注于主动和抑制性的染色质修饰和DNA甲基化的表观遗传机制,以调节对氧气供应减少的反应。我们还描述了当前对紧密调节mRNA翻译以协调缺氧下有效基因表达的共同和转录机制的知识。最后,我们在该领域提出了一系列杰出的问题,并考虑了如何对低氧触发的监管层次结构的分子起作用的新见解,这可能为开发洪水的作物铺平道路。
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。
随着越来越多的研究将牲畜农业与更快的全球变暖,更高的健康成本和更高的土地要求联系起来,通常建议将基于植物的饮食的急剧转变为有效的全能解决方案。隐含地,这一论点是基于以下假设:当前分配给动物生产系统的资源的重新分配将自动导致对人类食用作物的有效培养,而没有负面的环境,健康或社会经济后果。实际上,这种假设的有效性值得仔细检查,因为农场采用新的农业系统的能力是多方面的,并且有背景。通过对文献的跨学科综述,我们在这里讨论了意外后果的例子,这些后果可能是由于草原转化为可耕种的生产,包括对产量稳定性,生物多样性,土壤生育能力以及其他可能产生的不利影响。我们认为,这些问题中的几乎没有被认为是当前粮食安全辩论的一部分,并呼吁对供应方约束进行仔细检查。
Omega-3 长链多不饱和脂肪酸 (LC-PUFA)、二十碳五烯酸 (EPA;20:5 D 5,8,11,14,17) 和二十二碳六烯酸 (DHA;22:6 D 4,7,10,13,16,19) 现已被公认为健康均衡饮食的重要组成部分 (Napier 等人,2019 年;West 等人,2021 年)。供应 Omega-3 脂肪酸的野生捕捞渔业已达到可持续生产的最高水平;因此,满足日益增长的人口日益增长的需求的尝试依赖于替代鱼油来源 (Tocher 等人,2019 年)。亚麻荠 (Camelina sativa) 是一种油籽作物,含有高含量 ( > 35 % ) 的 α -亚麻酸 (ALA;18:3 D 9,12,15 ),并且已重建一条从 ALA 到亚麻荠 cv 中合成 EPA 和 DHA 的生物合成途径。 Celine 种子通过表达异源去饱和酶和延长酶基因,产生与海洋鱼油相当的 EPA 和 DHA 水平,以原型系 DHA2015.1(缩写为 DHA1)为例,积累了超过 25% 的 n-3 LC-PUFA(图 S1 和 S2(Petrie 等人,2014 年;Ruiz-Lopez 等人,2014 年)。英国、美国和加拿大的 DHA1 田间试验表明,omega-3 LC-PUFAs 特性在不同的地理位置和农业环境中是稳定的(Han 等人,2020 年)。同时,使用 DHA1 种子油的鲑鱼饲养试验和人类饮食研究均表明,这些转基因植物衍生油可以作为海洋衍生鱼油的有效替代品(Betancor 等人,2018 年;West 等人2021 年)。基于我们观察到的 ALA 是种子 omega-3 LC-PUFA 生产的内源性 C18 前体(Han 等人,2020 年),我们假设增加 ALA 库可以进一步增强 DHA1 亚麻荠中的 EPA/DHA 积累。DHA1 构建体已经含有 D 12 去饱和酶,可驱动脂肪酸流入 PUFA 生物合成(图 S1 和 S2)。然而,作为一种不太明显的方法,我们建议使用基因编辑的亚麻荠 fae1 突变体。亚麻荠 FAE1 与内源性 FAD2 D 12 去饱和酶(其
摘要:将电池保持在特定温度范围内对于安全性和效率至关重要,因为极端温度会降低电池的性能和寿命。此外,电池温度是电池安全法规的关键参数。电池热管理系统(BTMS)在调节电池温度方面是关键的。虽然当前的BTMS提供实时温度监测,但缺乏预测能力却构成了限制。本研究介绍了一种新型混合系统,该系统将基于机器学习的电池温度预测模型与在线电池参数识别单元相结合。标识单元不断实时更新电池的电气参数,从而提高了预测模型的准确性。预测模型采用自适应神经模糊推理系统(ANFIS),并考虑了各种输入参数,例如环境温度,电池电流温度,内部电阻和开路电压。该模型通过基于实时数据动态调整热参数来准确地在有限时间范围内准确预测电池的未来温度。实验测试是在一系列AMB温度范围内对锂离子(NCA和LFP)圆柱细胞进行的,以在不同条件下验证系统的准确性,包括电荷状态和动态载荷电流。提议的模型优先考虑简单,以确保实时的工业适用性。
由安德烈·梅特罗(AndréMétro)撰写并于1955年出版的第一版《种植的桉树》(Eucalypts)在过去的二十年中一直在许多国家 /地区使用。在那个时期,在建立和种植技术领域都有重大发展。种植园报告的面积增加了五倍,现在至少达到了至少400万公顷,分布在澳大利亚和东印度属的自然分布区域以外的90个国家 /地区。桉树对开发世界的重要性越来越重要,其中八十个国家报告了他们对该属的兴趣。他们有很多用途,用于锯木。牙髓,木材基面板,杆和柱子以及环境和便利设施的种植。他们在生产可再生的燃木资源中起着特别重要的作用,它们为特定的重力和体积生产提供了极好的结合。一种或其他一种桉树对从半渗透到冷气或高山的广泛气候的适应性是它们作为Exotics取得显着成功的原因之一。
技术促成的性别暴力 (TF GBV) 是一个全球性问题。它指的是通过使用信息通信技术或其他数字工具实施、协助、加剧或放大的任何行为,导致或可能导致身体、性、心理、社会、政治或经济伤害,或其他侵犯权利和自由的行为。它对妇女和女童的影响尤为严重。它是一种基于性别的歧视和侵犯人权的行为。1 它由权力不平衡、父权制和厌女症驱动,2 并且发生在多种、反复出现且相互关联的性别暴力形式之中。3 TF GBV 还加剧了现有的暴力形式(例如性骚扰和亲密伴侣暴力),并包括新形式的暴力(例如变焦轰炸)。
1 约翰·英纳斯中心,诺里奇研究园区,诺里奇,英国;2 伯明翰大学生物科学学院,伯明翰,英国;3 约翰·宾厄姆实验室,剑桥,英国;4 澳大利亚堪培拉联邦科学与工业研究组织、农业与食品部 (CSIRO);5 意大利菲奥伦佐拉达尔达基因组学和生物信息学研究中心农业研究与经济理事会;6 欧洲分子生物学实验室,欧洲生物信息学研究所,威康基因组园区,欣克斯顿,英国;7 罗瑟姆斯特德研究中心,哈彭登,英国;8 昆士兰大学昆士兰农业与食品创新联盟,圣卢西亚,澳大利亚;9 诺丁汉大学植物与作物科学系,萨顿博宁顿校区,拉夫堡,英国; 10 意大利博洛尼亚大学农业与食品科学系(DISTAL);11 加拿大萨斯卡通萨斯喀彻温大学作物发展中心;12 墨西哥埃尔巴丹国际玉米和小麦改良中心(CIMMYT)
1牛津可持续基础设施系统计划(OPSIS),环境变化研究所,牛津大学,牛津大学,牛津大学,英国牛津大学,2 ihcantabria,Instiatuto de Hidraulica Ambiental de la la la la la la la de la de Cantabria,西班牙桑坦德,西班牙桑坦德,西班牙桑坦德,3,3 3,苏黎世,Zurich,Zurich,switerd,switser,switerd,switem,Zurich,4阿姆斯特丹,荷兰,剑桥大学5号工程系,剑桥大学,英国剑桥市,6,6座航空运输管理中心,克兰菲尔德大学,克兰菲尔德,英国克兰菲尔德,7地理和地理知识科学,乔治·梅森大学,美国费尔法克斯,弗吉尼亚州,美国,美国,美国8号。苏黎世,瑞士