这项工作确立了用茴香提取物制造的铜纳米果(Cunps)的细胞毒性,抗氧化剂和抗癌作用,尤其是在非小细胞肺癌(NSCLC)上。cunps以两种NSCLC细胞系A549和H1650以剂量依赖性方式引起细胞毒性。在100μg/mL时,CUNPS在A549细胞中降低到70%,H1650细胞中的65%。显示出细胞毒性作用(p <0。05)。乳酸脱氢酶(LDH)相应地在细胞中以很高的比例存在,在测试时证明。及其细胞毒性特性,Cunps表现出较高的抗氧化活性。当纳米颗粒的浓度高(100μg/ml)时,浓缩氧(ROS)的比率降低了多达50%,这反过来又表明抗氧化活性。有很多证据表明Cunps具有抗癌潜力。分子对PI3K/AKT/MTOR途径的影响已经表明,这是对癌症存活至关重要的途径之一。Western印迹分析和QRT-PCR结果表明,在CUNP暴露时,该途径中蛋白质会广泛降解。有趣的是,以100μg/ml的磷酸化下降了高达75%的PI3K,AKT和MTOR(P <0。001)。总之,这些发现说明了CUNPS治疗作用背后的机制,从而使它们成为NSCLC治疗的良好靶标。Cunps具有细胞毒性和抗氧化能力,以及肺癌途径的重大改变,因此可以将其视为抗癌候选者。
摘要 在全球化的世界中,中小型制造企业(制造业 SME)面临着跟上全球竞争的挑战。尽管人工智能被认为具有从根本上改变整个市场、行业和一般商业活动的潜力,但问题仍然是中小企业如何有效和高效地在其运营中实施人工智能,从而建立潜在的(服务)商业模式。本文的目的是揭示这些系统的创新潜力,并指导中小企业如何使用它们。通过这些资源可以更有效地利用,并可以创建新的商业模式。人工智能很少使用的原因有很多,本文旨在寻求解决方案。结果是一个社会技术框架,允许制造业中小企业为自己建立基于人工智能的(服务)商业模式。
在 IDEXX 远程医疗顾问的电子病历系统中搜索了 2023 年 1 月 1 日至 2023 年 3 月 31 日期间接受胸部 X 光检查的 YT、哈巴狗、POM 和 BT。这些 X 光片之前已提交给 IDEXX 远程医疗顾问进行远程医疗审查。如果狗进行了 2 次或 3 次胸部 X 光检查(至少 1 次右侧胸部 X 光检查和 1 次腹背或背腹视图),并且未发现心肺或全身疾病的证据,则将其纳入。所有 X 光检查不完整和/或已知心外疾病的狗均被排除在外(即胸部 X 光片上的异常,如胸腔积液、淋巴结肿大、肺炎或肿瘤)。定位不佳的放射线研究限制了研究心脏病专家判断的 VHS 和 VLAS 测量的准确性,因此也被排除在外。研究中包括的所有狗都必须具有正常的心脏听诊,这由进行身体检查的原始兽医记录在远程医疗咨询表中。所有报告有心脏杂音的狗都被排除在外。如果狗没有报告心脏杂音,但最初的 IDEXX 放射科医生或心脏病专家报告主观心脏扩大,正在服用可能影响心脏大小的心脏药物(即匹莫苯丹或利尿剂),有无谷物饮食史,或有 N 端脑钠肽前体升高史,则该狗被称为“疑似心脏病”并被排除在外。从患者记录和射线照片中收集的数据包括年龄、体重、性别、VHS 和 VLAS。所有品种的 VHS 和 VLAS 测量均由同一位获得委员会认证的心脏病专家进行。由于所有 X 光片都是数字格式,因此使用数字卡尺进行测量并在右侧 X 光片上进行。VHS 测量采用 Buchanan 和 Bücheler 1 最初描述的技术,其中测量心脏长轴从隆突中心到心脏腹尖最远端轮廓。隆突被定义为气管内透射线的圆形结构,代表左、右主支气管的分叉。心脏短轴在心脏中央第三区域测量,垂直于长轴。然后将两个轴测量值定位在胸椎体上,从第四胸椎的颅缘开始。两个轴的总和用于确定最接近 0.1 个椎骨的椎骨单位数(补充图 S1)。所有测量均为
2020 年,一切都变了,世界人口突然被迫服从基于恐惧的精神控制程序。这一行之有效的策略导致了可预见的公众反应迟钝,主要是由于毫无疑问的顺从;这种心态可以说是许多历史暴行的罪魁祸首。永远不要忘记英国使用的奥威尔式恐吓信息,命令所有人:待在家里/保护 NHS/拯救生命。国家医疗服务体系 (NHS) 与世界其他机构、公司和媒体一样,盲目服从,步调一致。这是由一群未经选举的全球主义者策划的全球骗局,旨在启动“大重置”,从而表明这场上演的疫情不是随机事件,而是经过精心策划的。
现象预测(PP)是一种利用近红外光谱(NIRS)数据的新方法,为育种应用提供了基因组预测(GP)的替代方法。在PP中,高光谱关系矩阵取代了基因组关系矩阵,可能会导致添加剂和非加性遗传效应。与GP相比,PP具有成本和吞吐量的优势,但影响其准确性的因素尚不清楚,需要定义。本研究研究了各种因素的影响,即训练人群的规模,多种环境信息整合以及基因型X环境(GXE)效应对PP的影响与GP相比。我们评估了在四种不同环境中种植的水稻多样性面板中的几种农艺上重要特征(开花,植物高度,收获指数,千粒体重和谷物氮含量)的预测准确性。培训人群规模和GXE效应包容对PP准确性的影响最小。影响PP准确性的关键因素是包括的环境数量。使用来自单个环境的数据,GP通常超出执行的PP。但是,使用来自多个环境的数据,使用基因型随机效应和每个环境的关系矩阵,PP获得了与GP的可比精度。与使用单个信息源相比,将PP和GP信息组合在一起(例如,GP,PP的平均预测能力以及GP和合并的GP和PP的平均预测能力分别为0.44、0.42和0.44)。我们的发现表明,当所有基因型至少具有一个NIRS测量值时,PP可以与GP一样准确,这可能为水稻育种计划提供重要优势,降低育种周期并降低计划成本。
摘要 癌症是二十一世纪最具破坏性的疾病之一,引起了医学界和学术界的极大关注。为了在抗击癌症的斗争中取得胜利,目前正在研究多种治疗方式。纳米技术已成为一个重要的科学研究领域,具有跨学科应用的潜在应用。它借鉴了化学、物理学、材料科学、工程学、生物学和健康科学等一系列学科的见解。近年来,纳米技术在医学领域的应用显着增加,目的是预防和治疗人体内的疾病。在过去的二十年里,氧化锰纳米材料 (MnONs) 及其衍生物在生物成像、生物传感、药物/基因传递和肿瘤治疗中的应用引起了越来越多的关注。这是因为这些材料具有可调节的结构/形态、独特的物理/化学性质和出色的生物安全性。使用原材料、蔬菜和水果、植物提取物、微生物和真菌绿色合成 MnNPs 具有多种优势,包括无毒、环保、清洁和成本效益。鉴于其作用机制的多样性,绿色生产的 MnNPs 代表了新型抗炎和抗氧化化合物的有希望的来源。已证明 MnNPs 通过激活凋亡信号转导途径或抑制血管生成信号传导,对一系列癌细胞(包括结肠、肝脏、宫颈、乳腺癌、黑色素瘤和前列腺癌细胞)发挥抗增殖活性。在癌症治疗方面,正在研究金属纳米疗法的潜力,包括使用 MnO NPs。MnO 增强的组织渗透和保留特性促进了其作为药物载体的功能。MnONPs 已被提出表现出酶样活性,包括过氧化物酶、过氧化氢酶、氧化酶、谷胱甘肽过氧化物酶和超氧化物歧化酶。通过绿色合成获得的生物相容性表明其不仅可用于特定癌症病症,还可用于其他类型的癌症,而且没有与这些化合物相关的毒性风险。可以想象,这些治疗策略不仅对上述癌症病例有益,而且对其他增殖性疾病病例也有益。通过绿色合成获得的生物相容性证明这些化合物的毒性风险较低,这表明它们在一系列生物医学应用中具有潜在用途。关键词:绿色合成、癌症、氧化锰纳米粒子、纳米生物技术。
(SHRI JITIN PRASADA)(a)至 d):印度政府强调“全民人工智能”的概念,这与总理在全国范围内培育和推动尖端技术应用的愿景相一致。这一举措旨在确保人工智能惠及社会各界,推动创新和增长。政府致力于利用人工智能 (AI) 的力量,在医疗、农业、教育、政府治理、新闻部和其他领域造福人民。与此同时,政府也意识到人工智能带来的风险。幻觉、偏见、错误信息和深度伪造是人工智能带来的一些挑战。为了应对人工智能的挑战和风险,政府认识到需要建立护栏以确保人工智能的安全和可信。因此,中央政府在与相关利益相关方进行广泛的公众协商后,于 2021 年 2 月 25 日公布了《信息技术(中介机构指南和数字媒体道德规范)规则》2021 年(“2021 年 IT 规则”),该规则随后于 2022 年 10 月 28 日和 2023 年 4 月 6 日进行了修订。2021 年 IT 规则对中介机构(包括社交媒体中介机构和平台)规定了具体的法律义务,以确保他们对安全可信的互联网负责,包括迅速采取行动消除被禁止的虚假信息、明显虚假的信息和深度伪造。如果中介机构未能遵守 2021 年 IT 规则规定的法律义务,他们将失去《2000 年信息技术法》(“IT 法”)第 79 条规定的避风港保护,并应根据任何现行法律承担相应的诉讼或起诉。 《2023 年数字个人数据保护法》于 2023 年 8 月 11 日颁布,该法案规定数据受托人有义务保护数字个人数据,追究其责任,同时确保数据主体的权利和义务。政府已成立人工智能咨询小组,针对印度特定的监管人工智能框架,由印度总理首席科学顾问 (PSA) 担任主席,来自学术界、工业界和政府的不同利益相关者参与,目标是解决与制定负责任的人工智能框架有关的所有问题,以实现人工智能的安全和可信开发和部署。
1 伦敦玛丽女王大学生物与行为科学学院,英国伦敦,2 性状多样性与功能系,皇家植物园,英国萨里郡里士满丘,3 加拿大安大略省多伦多市多伦多斯卡伯勒大学物理与环境科学系,4 美国爱荷华州艾姆斯市爱荷华州立大学生态、进化与生物生物学系,5 美国明尼苏达州圣保罗市明尼苏达大学生态、进化与行为系,6 美国密歇根州东兰辛市密歇根州立大学植物生物学系和生态、进化与行为项目,7 爱尔兰都柏林都柏林圣三一大学自然科学学院、动物学系,8 加拿大安大略省多伦多市多伦多斯卡伯勒大学生物科学系,9 美国科罗拉多州博尔德市科罗拉多大学生态与进化生物学系,10 生态研究所和进化,耶拿弗里德里希席勒大学,耶拿,德国,11 德国哈勒-耶拿-莱比锡综合生物多样性研究中心 (iDiv),莱比锡,德国,12 莱比锡大学生物研究所,莱比锡,德国,13 伦敦帝国理工学院生命科学系,西尔伍德公园,阿斯科特,英国,14 吕讷堡吕讷堡大学生态研究所,吕讷堡,德国,15 乌得勒支大学生物系,乌得勒支,荷兰,16 拜罗伊特生态与环境研究中心干扰生态学系,拜罗伊特大学,拜罗伊特,德国,17 麦克丹尼尔学院生物系,威斯敏斯特,马里兰州,美国,18 肯塔基大学植物与土壤科学系,列克星敦,肯塔基州,美国,19 索邦大学法国巴黎大学、法国国家科学研究院、法国农业研究理事会、法国国家农业科学研究院、法国农业科学研究院、巴黎大学城、法国巴黎高等师范学院、法国巴黎索邦大学生态与环境科学研究所、德国莱比锡亥姆霍兹环境研究中心(UFZ)生理多样性系、英国兰卡斯特大学兰卡斯特环境中心、美国明尼苏达州穆尔黑德明尼苏达州立大学生物科学系、美国密歇根州霍顿密歇根理工大学生物科学系