摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
图像包含大量冗余信息,使其具有挑战性地在大规模上从它们中有效地了解它们。最近的工作通过在视觉语言构想学习期间掩盖图像贴片来解决这个问题[15,33,36,70]。一种简单的方法是随机放下大部分斑块,通过降低每个训练迭代中的计算成本和记忆使用量,从而更有效地培训训练[36]。替代策略是掩盖语义相关的贴片[15,33,70],例如属于同一对象的贴片。这迫使学习的模型预测从上下文中描述缺少场景结构的单词,从而改善了学识渊博的表示。但是,这种方法需要一种单独的机制来将语义重新贴定的补丁分组在一起,这为学习过程增加了相当大的复杂性,并且计算上很昂贵。我们提出了一种简单的掩盖策略,用于避免这些缺点的多模式对比学习。在训练期间,我们掩盖了斑块的随机簇(图1)。对于此聚类,我们将Patches的原始RGB值用作特征表示。我们的方法利用了一个事实,即视觉相似性的简单度量通常可以限制相干的视觉结构,例如对象部分[18,53],
其在光伏应用领域的研究引起了人们的兴趣,因为它们的量子效率已经达到了 25.5% [1],而且还扩展到辐射传感 [2,3] 和各种光电设备。[4–7] 达到高质量 MAPbI 3 、FAPbI 3 和 CsPbI 3 单晶的极限,与 MA、FA 和铯 (Cs) 阳离子混合物的组合结构成为最先进的钙钛矿材料,提高了量子效率并将结构稳定性从几天延长到几个月。[2,8–10] 由于基本物理性质接近其母结构,因此所提出的 FA 0.9 Cs 0.1 PbI 2.8 Br 0.2 可作为铅卤化物钙钛矿类的有效模型系统。与传统的 III-V 和 II-VI 半导体相比,钙钛矿在某种意义上具有反转的能带结构:价带 (VB) 态由 s 轨道形成,而导带 (CB) 态由 p 轨道贡献。强自旋轨道耦合,特别是 Rashba 效应 [11–14] 也会交换电子和空穴的自旋特性。[15,16] 因此,与晶格核的超精细相互作用由空穴而不是电子主导。钙钛矿能带结构为光学跃迁提供了清晰的极化选择规则,因此结合
如今,为了满足人类的能源需求,对一次能源和二次能源的需求一直在增加。近年来,太阳能电池已被用作生产可再生、可持续和无污染能源的替代品。各种材料已被用作电池中的传输层。TIO2 是这些材料之一,已被广泛用作电子传输层,但目前,ZnO 是另一种重要材料。比 TIO2 的使用更晚。此外,钙钛矿太阳能电池是属于纳米家族的新一代太阳能电池。目前,钙钛矿太阳能电池 (PSC) 是电子工业中一种很有前途的电池,因为它具有高功率转换效率,以及制造硅太阳能电池的相对较低的成本,以及导致钙钛矿在不同类型的基板上使用的灵活性。此外,石墨烯作为光伏能量转换最重要的基本光伏材料已经出现并得到使用。石墨烯在太阳能电池的构造中用作透明电极、层间活性层、电子和空穴传输层或电子和空穴分离层。在本文中,目标是找到太阳能电池中功率转换效率最高的最佳结构,我们将进一步看到,通过使用钙钛矿、ZnO 和石墨烯,我们将以较低的制造成本实现 16% 的功率转换效率。
戴维斯致力于培养未来杰出律师,这一点深深吸引着我。从事务所独特的通才方法,到让学生广泛接触各种实践领域,再到获得正式和非正式指导机会,我非常高兴能在今年夏天及以后加入戴维斯。
目标:开发一种在军事场合中测量医疗决策的方法,以评估睡眠剥夺,疲劳和其他压力源对关键技能恶化的影响。方法:参加了护理医生(DNP)计划或护理科学学士学位(BSN)计划的37名学生参加了这项研究。在三天的时间里,学生参与者在早上发出了五个问题,晚上有五个问题。在第四天,学生在早上收到10个问题,晚上有10个问题。DNP学生收到药物计算问题,BSN学生收到了基本的生命支持(BLS)问题。所有问题均来自标准化的测试库来源,是多项选择,并且在研究测试之前,研究小组对相关内容进行了彻底审查。结果:50个BLS和用药计算问题中有25(50%)和28(56%)符合10到50秒之间的平均响应时间的选择标准,准确性至少为80%。从这些方面选择了16个问题,这些问题的标准偏差较小,最小响应时间至少为5秒,最大响应时间小于90秒。含义:为了测试睡眠剥夺,疲劳或任何其他压力源对现场培训操作中军事医疗个人的关键决策技巧的影响,有必要开发一个敏感的问题,这些问题足够敏感,以检测由于人为因素而导致的变化。我们的研究实现了这一目标,可以使用由此产生的药物计算和BLS问题来评估现场环境中关键决策技巧的恶化。关键词:关键技能,灾难训练,睡眠和疲劳
最近,注意力集中在用低毒性和无毒阳离子替换PB上。理想的无铅候选者应具有低毒性,狭窄的直接带隙,高光吸收系数,较高的迁移率,低激子结合能,长载体寿命和稳定性。已经提出了几种可能毒性较小的化学兼容材料,例如SN,BI和GE作为PB的替代品,不仅降低了PB的毒性,还可以保留钙钛矿的独特光电特性。中,SN是一种环保的材料,广泛用于各种有希望的光电设备,例如太阳能电池和FET,因为它满足了电荷平衡,离子大小和协调的先决条件。[8] SN是元素周期表中的14组元素,它的离子半径(115 pm)与PB(119 pm)。像PB一样,SN具有惰性的外轨道,这对于获得金属卤化物钙钛矿的特殊电气和光学特性很重要。与基于PB的钙钛矿相比,基于SN的基于SN的钙钛矿还表现出相似的优质光电子特性,狭窄的带隙约为1.3 eV,高电荷迁移率约为600 cm 2 V -1 S -1,长载体扩散和寿命,以及高吸收系数,高吸收系数约为10 -4 cm -4 cm -1。[15]然而,由于SN在水分和氧气中环境中的稳定性较差,与PB相比,其性能较低。因此,为了环境和人类,需要进行连续而深入的研究以解决在钙钛矿场现场效应晶体管中替换SN时性能差的问题。
该项目将为海象科和海马科食肉动物(分别为太平洋海象和加州海狮)提供听觉数据,以便比较这些海洋哺乳动物类群之间的声学敏感性并支持环保合规工作。海洋生物资源 (LMR) 计划为该项目提供资金,补充了美国支持的一项持续努力。鱼类和野生动物管理局与美国地质调查局合作,对太平洋海象 (Odobenus rosmarus divergens) 的听觉掩蔽进行了特征分析,以同时产生噪音。LMR 的额外支持使项目团队能够将研究范围扩大到包括加州海狮 (Zalophus californianus) 并收集其他比较数据。这项研究将为被指定为“其他海洋食肉动物”的海洋哺乳动物功能性听力组提供与噪音暴露标准相关的新信息。这是一组不属于海豹科(真正的海豹)的两栖海洋哺乳动物,包括海狮、海狗、海象和海獭。它们是听觉和噪音影响方面研究最少的海洋哺乳动物之一,但它们却占据着对美国海军行动至关重要的北太平洋和北极水域。
●奖学金的合同将与机构而不是学生签订。导师必须在其机构中与办公室进行沟通,该公司负责批准外部研究合同以确保及时执行合同。这对于奖学金开始时至关重要。●该研究员将受到大学/机构保险和工人赔偿。●同伴将参加虚拟方向。●教授/赞助科学家和研究员将在现场季节与资源经理和CSC亲自,通过视频会议或通过电话促进团队文化并确保所有各方都了解该项目的进度。●同伴将定期检查电子邮件和语音消息,以促进CSC和奖学金计划操作之间的沟通。●在没有手机服务的位置工作的研究员将需要具有卫星通信设备进行紧急联系。
在过去的二十五年中,MAX 相及其衍生物 MXenes 已成为材料研究的焦点。这些化合物无缝融合了陶瓷和金属特性,具有高导热性和电导性、机械强度、低密度和耐极端条件性。它们的多功能性使其成为各种应用的有希望的候选材料,特别是在用于氢气释放的先进光催化和电催化中。此外,MAX 相和 MXenes 是潜在的储氢材料,具有独特的结构,可为高效的氢气储存和释放提供充足的空间,这对于燃料电池等清洁能源技术至关重要。本综述旨在全面分析它们在光催化、电催化和储氢中的作用,重点关注它们的层状晶体结构。MAX 相集成了优越的金属和陶瓷属性,而 MXenes 提供可调节的电子结构,可增强催化性能。持续探索对于充分发挥其潜力、推动清洁能源技术及其他领域至关重要。
