通过破坏势能壁垒的对称性 Dae-Han Jung、Hee-Sung Han、Namkyu Kim、Ganghwi Kim、Suyeong Jeong、Sooseok Lee、
Skyrmion 从高能物理进入材料科学 1 ,在那里它们被引入来模拟原子核 2-4 。它们是拓扑保护磁存储器的潜在候选者 5-7 。 Skyrmion 的拓扑稳定性源于连续场在连续几何空间上映射的离散同伦类,例如,将三分量恒长自旋场映射到磁性薄膜的二维空间。它依赖于二维海森堡模型的平移(准确地说是共形)不变性。一旦这种不变性被晶格破坏,skyrmion 就会变得不稳定,不会坍缩 8 ,必须通过额外的相互作用来稳定,比如 Dzyaloshiskii-Moriya、磁各向异性、塞曼等。在典型的实验中,skyrmion 的大小由磁场控制。当尺寸低于一定值时,交换相互作用总是占上风,而 skyrmion 会坍缩 9。观察到的 skyrmion 纹理通常包含数千个自旋。即使是实验中最小的纳米级 skyrmion 也包含数百个自旋。此类 skyrmion 由 Lorentz 透射电子显微镜 10 成像,通常被视为经典物体。然而,随着 skyrmion 变得越来越小,人们必须预料到量子力学在某个时候会发挥作用。这项工作的动机是观察到 skyrmion 经典坍缩为晶格的一个点与量子力学相矛盾。它与不确定性原理相矛盾,就像电子坍缩到质子上一样。然而,当前的问题比氢原子的问题要困难得多。skyrmion 拥有的大量自旋自由度类似于多电子原子的问题,对于多电子原子,无法对其进行量子态的分析计算。过去,人们已经研究过 skyrmion 量子行为的某些方面。基于 Thiele 动力学与磁场中带电粒子运动的类比,人们研究了 skyrmion 在钉扎势中的量子运动 11 。人们通过从自旋场的拉格朗日量推导出 Bolgoliubov-de Gennes 哈密顿量,解决了手性磁体中的磁振子-skyrmion 散射 12 。通过开发
我们考虑局部在拓扑上是非平凡的磁纹理 - 天际,反对者和bimerons在薄的磁纤维中,具有各向异性界面dzyaloshinskii-moriya相互作用(IDMI)。我们使用微磁模拟和分析考虑来研究这些纹理的磁间结构和稳定性。Skyrmion和Antiskyrmion即使对于小各向异性,沿IDMI张量的主轴变成了椭圆形和正向。相比之下,Bimeron(抗映体)方向随着IDMI各向异性的变化而变化。取决于IDMI各向异性,Bimeron可能由涡流和抗Vortex对组成或“刺猬”状态和抗Vortex。在实验中,可以通过施加到磁纤维的菌株来诱导所考虑的IDMI各向异性。我们开发了一种现象学方法来建立菌株IDMI关系。
手性是一种基本的不对称性质,用来描述可与其镜像区分开来的系统,它仍然是现代科学关注的焦点 1 – 4 ,手性材料有多种应用 5 – 8 。手性拓扑结构为新一代手性材料奠定了基础,其中手性扩展到纳米和微米尺度。在胆甾型液晶中观察到了非均匀手性态、螺旋、蓝色和扭曲晶界 (TGB) 相 9、10 。Skyrmion 是矢量序参数(如磁化强度或极化密度)的手性结构,由于其在信息技术中的潜在应用,在过去十年中在磁性材料中引起了相当大的关注 11 – 13。然而,这些材料的一个显着特征是特定的非手性对称性,这种对称性由胆甾体中的非镜像对称分子或磁性系统中的反对称自旋交换所具有,从而导致 Dzyaloshinskii-Moriya 自旋相互作用。最近,据报道,将承载 skyrmion 的磁体类型扩展到没有 Dzyaloshinskii-Moriya 自旋相互作用的系统14,15。然而,在这些系统中调整 skyrmion 手性的可能性仍是一个悬而未决的问题。虽然铁电材料中不存在预定义的手性对称性,但最近发现它们具有丰富的手性拓扑激发,包括布洛赫畴壁16-19,具有 skyrmion 结构的无芯涡旋20-22,单个 skyrmion 23,24,skyrmion 晶格 25 和 Hopfion 26。铁电体的一个显著特征是,当去极化电荷 ρ = ∇⋅ P 重排以降低它们的相互作用能时,由于限制和去极化效应的特定相互作用导致自发对称性破缺,从而出现手性,导致极化发生手性扭曲。重要的是,不同的手性(“左”态和“右”态)在能量上是简并的,因此可以互相切换。然而,执行这种手性切换是一项挑战,因为可以作为控制参数的基本场具有非手性性质。我们发现,由于去极化效应会导致大量拓扑激发,因此铁电纳米点可以提供丰富的相图,并且我们证明铁电纳米点包含极化 skyr-mions。特别是,我们设计了一个系统,其中可以通过施加电场来实现相反手性之间的受控切换。
摘要:光提供了一种控制材料物理行为的强大手段,但很少用于为活性物质系统提供动力和引导。我们展示了对被称为“skyrmion”的液晶拓扑孤子的光学控制,这种孤子是最近出现的可高度重构的无生命活性粒子,能够表现出诸如群居之类的突发集体行为。由于手性向列液晶具有扭曲的自然倾向,并且对电场和光反应灵敏,因此它可作为动态控制 skyrmion 和其他活性粒子的试验台。利用环境强度的非结构化光,我们展示了由振荡电场驱动并由光诱导障碍物和图案照明引导的大规模多面重构和集体 skyrmion 运动的解除。