摘要本文重点介绍了自动驾驶车辆的控制问题之后的路径。旨在增强鲁棒性和衰减现象,基于Lyapunov理论开发了一种超级扭转的滑动模式控制算法(STA),其中通过应用倒退技术来提供控制系统稳定性的证明。此外,进行MATLAB/SIMULINK和CARSIM之间的共模拟以验证控制性能后的路径。在这项研究中,Stanley控制器,常规滑动模式控制(SMC)和模型预测控制(MPC)用作评估提出的STA性能的基准控制器。在模拟中考虑了两种驾驶场景,包括正常驾驶和猛烈驾驶。全面评估控制绩效和控制工作(即转向的大小),新颖地提供了一个集成和加权性能评估指数。仿真结果表明,在正常驾驶情况下,所提出的STA的𝐼𝑊𝑃𝐸𝐼可以减少40.5%,25.8%,10.9%;与斯坦利控制器,常规SMC和MPC相比,在激烈的驾驶情况下,在激烈的驾驶情况下有62.5%,24%,6.8%。结果还表明,所提出的STA在颤动的衰减方面优于常规SMC,从而导致前方向盘角度输入更平滑,并且更平滑。与MPC相比,所提出的STA的优点在于其计算复杂性较低。此外,通过更改车辆质量和轮胎参数来验证控制器的鲁棒性。与基准方法相比,所提出的STA可以将𝐼𝑊𝑃𝐸𝐼的波动减少22.6%,22.3%和5.9%。这些结果表明,对系统扰动的考虑对于超级扭转滑动模式控制器的设计至关重要,这可以改善系统后自动驾驶汽车路径的鲁棒性。
• 本简报指出了一些因素,这些因素可能会减少特朗普政府破坏气候政策的预期努力所带来的一些负面影响,以及一些可能实现两党积极气候合作的领域。 • 基于法律的政策,例如《通货膨胀削减法案》中的气候倡议,将很难结束。共和党在国会的多数席位非常小,因此许多具体的反气候行动措施,例如停止对电动汽车 (EV) 和电池工厂的支持,不太可能通过。 • 拜登总统的许多法规将很难逆转,它们旨在经受住法庭挑战。改变法规需要遵循复杂而漫长的程序,任何新的特朗普政府法规都将在法庭上受到准备充分且资金充足的州检察长和非政府组织法律团队的质疑,从而导致相当大的延误。 • 特朗普标志性的经济政策,尤其是关税、移民限制和驱逐出境,可能会破坏供应链并减缓经济增长,从而实际上减少温室气体 (GHG) 排放,类似于 COVID-19 大流行的影响。讽刺的是,这些政策可能是特朗普政府对温室气体减排的意外重大贡献,尽管是以牺牲人民生计为代价,而不是通过对可持续能源转型的投资。• 即使特朗普成功实施反气候和化石燃料促进政策,化石燃料产量也不一定会增加,因为市场条件不利于增加产量。美国的石油和天然气产量已经达到创纪录的水平,而且没有一家公司在阿拉斯加最近的石油和天然气租赁销售中竞标。• 即使减少财政激励,可再生能源的扩张可能不会显着放缓。技术进步和规模经济将稳步降低可再生能源的成本,而化石燃料的生产成本将会增加。可再生能源是增加人工智能(AI)和其他需求增加来源的电力供应的最快方式。• 许多州和城市将单独和集体继续实施气候政策,包括限额与交易计划,特朗普政府很难破坏这些政策。• 包括加利福尼亚州和马萨诸塞州在内的几个主要州已经增加了其总检察长办公室的工作人员和资金,为挑战特朗普政府的政策做准备。 • 许多美国公司仍致力于气候行动,因为降低温室气体排放可以降低投入成本并提高效率,而气候变化的影响会损害其业务。许多投资者和其他利益相关者仍然希望公司继续提高其气候行动的雄心。 • 在碳去除、工业脱碳、地热能和碳关税。
摘要:电气接触材料越来越广泛地使用,但是现有的电动接触润滑剂仍然有很大的改进空间,例如抗衣性能和润滑寿命。由于出色的电气和润滑性能,石墨烯在润滑滑动电触点界面方面具有巨大的潜力,但缺乏相关的研究。一些研究人员研究了石墨烯在超低电流下涂有金色/锡涂层摩擦对之间的润滑性能。然而,尚未报道石墨烯在更广泛使用的电气接触材料上的润滑性能,例如铜及其合金在较大,更常用的电流或电压条件下。在本文中,我们研究了铜中石墨烯及其合金在常规参数下滑动电触点界面的润滑性能,这是通过四个方面探索的:不同的基板 - copper和brass,不同的测试方法,不同的测试方法 - 恒定伏特和恒定的电流和恒定电流,不同的正常负载和耐用性测试。实验表明,在上述测试方法和参数下,石墨烯可以显着减少黄铜和铜的摩擦和磨损,同时具有低接触电阻。我们的工作有望为电接触材料提供一种新的润滑剂,并有助于丰富石墨烯的摩擦学理论。关键字:石墨烯;滑动电触点;铜;减少摩擦;反衣低接触电阻
KSD GmbH根据激光硬涂层的piple制造幻灯片。这种创新的光子涂料工艺使高质量的合金能够以保存资源的方式使用。我们成功地开发了这一过程,以至于它可以直接在激光束中实现新材料。我们多年的经验使我们今天可以覆盖幻灯片戒指或幻灯片轴承,并带有随后的高质量饰面。在48小时内交付时间对于我们的激光硬涂合金而言并不是问题。对于单个部分或少量,我们也可以接管完整的生产。最大。外径为380毫米的外直径,内部的轮胎制造和测试过程发生在内部。较大的尺寸,滑动表面上的特殊轮廓和丝状凹陷以及从直径25毫米的轴承轴承的内部涂层也可以在我们的com pany中实现。除了我们制造的硬金属配对外,我们还提供了混合的配对。这些包括与
模仿传统数值天气预测(NWP)模型并源自全球大气重新分析数据的现代深度学习技术在几年内引起了一场巨大的革命。在这个新的范式中,我们的研究引入了一种新型策略,该策略偏离了对高分辨率数据的共同依赖性,该数据通常受到计算资源的限制,而是利用了全球天气预测和气候数据分析的低分辨率数据(2.5度)。我们的主要重点是评估数据驱动的天气预测(DDWP)框架 - 专门针对样本量的充分性,模型的结构改进以及气候数据代表当前气候趋势的能力。通过使用FourcastNet使用自适应傅里叶神经操作员(AFNO)模型,并提出了一种时间平滑的方法来夸大ECMWF重新分析V5的数据集(ERA5),本文通过添加更多变量和新颖的方法来增强数据和处理方法来改善传统方法。我们的发现表明,尽管分辨率较低,但提出的方法在预测大气条件方面表现出了相当准确的准确性,从而有效地与高分辨率模型抗衡。此外,该研究证实了该模型在反映当前气候趋势及其在预测未来气候事件方面的潜力,强调其在气候变化策略中的效用。这项研究标志着气象预测领域的关键步骤,展示了低分辨率数据在产生可靠的预测和开放途径方面的可行性,以实现更容易获得和包容性的气候建模。这项研究收集的见解不仅有助于气候科学的发展,而且为该领域的未来创新奠定了基础。
由于环境条件多变,光伏 (PV) 系统参数始终是非线性的。在多种不确定性、干扰和时变随机条件的发生下,最大功率点跟踪 (MPPT) 很困难。因此,本研究提出了基于被动性的分数阶滑模控制器 (PBSMC),以检查和开发 PV 功率和直流电压误差跟踪的存储功能。提出了一种独特的分数阶滑模控制 (FOSMC) 框架的滑动面,并通过实施 Lyapunov 稳定性方法证明了其稳定性和有限时间收敛性。还在被动系统中添加了额外的滑模控制 (SMC) 输入,通过消除快速不确定性和干扰来提高控制器性能。因此,PBSMC 以及在不同操作条件下的全局一致控制效率是通过增强的系统阻尼和相当大的鲁棒性来实现的。所提技术的新颖之处在于基于黎曼刘维尔 (RL) 分数阶微积分的 FOSMC 框架的独特滑动曲面。结果表明,与分数阶比例积分微分 (FOPID) 控制器相比,所提控制技术可在可变辐照度条件下将 PV 输出功率的跟踪误差降低 81%。与基于被动性的控制 (PBC) 相比,该误差降低 39%,与基于被动性的 FOPID (EPBFOPID) 相比,该误差降低 28%。所提技术可使电网侧电压和电流的总谐波失真最小。在不同太阳辐照度下,PBSMC 中 PV 输出功率的跟踪时间为 0.025 秒,但 FOPID、PBC 和 EPBFOPID 未能完全收敛。同样,直流链路电压在 0.05 秒内跟踪了参考电压,但其余方法要么无法收敛,要么在相当长的时间后才收敛。在太阳辐射和温度变化期间,使用 PBSMC,光伏输出功率在 0.018 秒内收敛,但其余方法未能收敛或完全跟踪,与其他方法相比,由于 PBSMC,直流链路电压的跟踪误差最小。此外,光伏输出功率在 0.1 秒内收敛到参考功率
您的奖学金存储库中的学生研究将这篇论文带给您,并为您提供了公开访问。已被授权奖学金存储库的授权管理人所接受。有关更多信息,请联系scholadshipshipsitory@richmond.edu。
许多病毒通过病毒壳中的纳米通道弹出,这是由高密度基因组堆积产生的内力驱动的。DNA出口的速度受限制分子迁移率的摩擦力控制,但这种摩擦的性质尚不清楚。我们引入了一种方法,通过用光学镊子测量噬菌体Phi29衣壳的DNA出口来探测紧密限制的DNA的迁移率。我们测量了极低的初始退出速度,速度指数增加的制度,主导动力学的随机暂停和较大的动态异质性。使用可变的力量测量提供了证据,表明初始速度由DNA-DNA滑动摩擦控制,这与纳米级摩擦的Frenkel-Kontorova模型一致。我们证实了理论模型预测的弹出动力学的几个方面。暂停的特征表明它与软性系统中“堵塞”的现象相连。我们的结果提供了证据表明DNA-DNA摩擦和堵塞控制DNA出口动力学,但这种摩擦并没有显着影响DNA包装。
摘要 本研究为木塑复合材料的工业加工提供指导,重点研究其在摩擦下的行为,特别是当摩擦由与硬质合金的滑动接触引起时的行为。使用响应曲面法(RSM)探索摩擦系数与木塑复合材料类型、负载力和往复频率之间的相关性,并进行了一系列摩擦试验。通过方差分析(ANOVA)确定了每个因素及其双因素相互作用的显著贡献,显著性水平为 5%,同时使用响应曲面法研究了摩擦系数的变化趋势。木塑复合材料类型对摩擦系数的影响最大,其次是负载力和往复频率。建立了数学模型(CoF = − 0.10 + 0.09 ω − 0.02 f +0.01 F n − 0.01 ω f +2.38×10 − 3 ω F n − 2.00×10 − 4 F nf +0.11 ω 2 +2.96 f 2 − 1.04×10 − 4 F n 2 ),以准确预测此类复合材料在加工过程中摩擦系数的变化。根据优化结果,聚丙烯木塑复合材料应采用高速切削加工,而聚乙烯和聚氯乙烯木塑复合材料建议采用低速加工,以确保最低的摩擦系数。
市场上有很多推拉门。然而,没有一种适合 B 级区域。直到现在。Cleangrad 密封推拉门 C-HSD-ALU 配有自动化装置,由公司内部开发,完全符合 B 级和 C 级洁净室区域的 GMP 要求。无论是铝、HPL 还是不锈钢饰面,密封推拉门都适用于所有墙体系统,并与任何类型的地板完全齐平。没有地板导轨和可移动部件,但在技术区域配备了带颗粒捕集器的导轨和控制单元,可以快速轻松地进行维护,而不会干扰洁净室。为了确保安全级别,这些门已通过 ZAG 和 SIQ 研究所的认证。
