摘要:甲烷的甲烷产生甲烷的甲烷,是人类厌氧微生物群中常见的古细菌。甲烷植物作为与营养不良相关的机会病原体的出现,并且在厌氧脓肿中也被检测和培养。他们在呼吸道中的存在尚不清楚。是对908个呼吸道样品的前瞻性研究,使用多重指导方法结合了PCR测序,实时PCR,原位杂交(FISH)和甲烷植物培养。在21 /527(3.9%)痰样品中检测到甲烷摩托杆菌史密斯和甲烷素的口腔DNA序列,2/188(1.06%)支气管肺泡灌洗,也没有193个Tracheo-Bronchial ChialChialChialChial Chial Chial Chial Chial Chipations。此外,在三个痰液中检测到的荧光原位杂交检测到了用棍子形态的样品研究的标本,暗示了M. oralis,而在另一种支气管肺泡灌洗样本中,研究了次生斑的形态,提示Smithii M. Smithii。这些观察结果将已知的甲烷植物领土扩展到呼吸道,并在任何以后从支气管肺泡灌洗和肺部隔离的情况下进一步解释其检测为病原体。
3。课程C,Hammer HF,Hammer,Hammer, 人类胃鼻虫中的甲烷发育。 Hepol Gastroenterol Nat 19:805–813。 ://doi.org/10.1038/s41575-022- 00673-z 4。 Catelier E,完成T,Qin J,Prince E,Hildebrand F,False G,Aluminum M,Aluminant M,Batto J-M,Kennedy S等。 2013。 人类具有代谢标记的丰富性。 自然500:541–546。 https://doi.org/10.1038/natur12506 5。 用户U,Shukla R,Wrimp D,UC Hashal。 2016。 非常综合征肠。 Word 10:932–938。 https://doi.org/10.5009/ GNL15588 6。 AJM海峡,Van Dijk JB,CM Pluge,CM。 1993。 IMPL返回微生物59:1114–1119。 59.4.4 fastQC:数据集的质量控制。 编织:http://www.braham。 B. 2014。 BBTools软件包装。 编织: 练习A,Antipov D,Meleshko D,Lapidus A,Chorobell A. 2020。 使用组件的水疗中心。 原始的Currish Bioinform 70:E102。课程C,Hammer HF,Hammer,Hammer,人类胃鼻虫中的甲烷发育。Hepol Gastroenterol Nat 19:805–813。Catelier E,完成T,Qin J,Prince E,Hildebrand F,False G,Aluminum M,Aluminant M,Batto J-M,Kennedy S等。2013。人类具有代谢标记的丰富性。自然500:541–546。https://doi.org/10.1038/natur12506 5。 用户U,Shukla R,Wrimp D,UC Hashal。 2016。 非常综合征肠。 Word 10:932–938。 https://doi.org/10.5009/ GNL15588 6。 AJM海峡,Van Dijk JB,CM Pluge,CM。 1993。 IMPL返回微生物59:1114–1119。 59.4.4 fastQC:数据集的质量控制。 编织:http://www.braham。 B. 2014。 BBTools软件包装。 编织: 练习A,Antipov D,Meleshko D,Lapidus A,Chorobell A. 2020。 使用组件的水疗中心。 原始的Currish Bioinform 70:E102。https://doi.org/10.1038/natur12506 5。用户U,Shukla R,Wrimp D,UC Hashal。2016。非常综合征肠。Word 10:932–938。 https://doi.org/10.5009/ GNL15588 6。 AJM海峡,Van Dijk JB,CM Pluge,CM。 1993。 IMPL返回微生物59:1114–1119。 59.4.4 fastQC:数据集的质量控制。 编织:http://www.braham。 B. 2014。 BBTools软件包装。 编织: 练习A,Antipov D,Meleshko D,Lapidus A,Chorobell A. 2020。 使用组件的水疗中心。 原始的Currish Bioinform 70:E102。Word 10:932–938。https://doi.org/10.5009/ GNL15588 6。 AJM海峡,Van Dijk JB,CM Pluge,CM。 1993。 IMPL返回微生物59:1114–1119。 59.4.4 fastQC:数据集的质量控制。 编织:http://www.braham。 B. 2014。 BBTools软件包装。 编织: 练习A,Antipov D,Meleshko D,Lapidus A,Chorobell A. 2020。 使用组件的水疗中心。 原始的Currish Bioinform 70:E102。https://doi.org/10.5009/ GNL15588 6。AJM海峡,Van Dijk JB,CM Pluge,CM。1993。IMPL返回微生物59:1114–1119。59.4.4fastQC:数据集的质量控制。编织:http://www.braham。B.2014。BBTools软件包装。编织:练习A,Antipov D,Meleshko D,Lapidus A,Chorobell A.2020。使用组件的水疗中心。原始的Currish Bioinform 70:E102。https://doi.org/10.1002/cpbi.102
Common Name Binomial Synonyms Group alligator juniper Juniperus deppeana trees aspen Populus tremuloides trees blue spruce Picea pungens trees bristlecone pine Pinus aristata trees corkbark fir Abies lasiocarpa sub-alpine fir trees Douglas fir Pseudotsuga menziesii trees Engelmann spruce Picea engelmannii trees Gambel橡木槲皮树树木树木弯曲的松树柔毛柔毛树木Pinderosa Pine Pinus Ponderosa树Rio Grande Cottorwood Populus Populus deltoides ssp。wislizeni populus wislizeni树落基山杜松子刺羊皮树俄罗斯橄榄伊利夫·埃拉努斯·安格斯蒂福利亚树saltcedar tamarix spp。trees southwestern white pine Pinus strobiformis trees twoneedle pinyon Pinus edulis trees wavyleaf oak Quercus X pauciloba Quercus undulata trees white fir Abies concolor trees blue grama Bouteloua gracilis grasses buffalo grass Bouteloua dactyloides Buchloe dactyloides grasses bush muhly Muhlenbergia porteri草小蓝色bluestem schizachyrium scoparium scoparium scwithgrass panicum virgatum virgatum virgatum草sand蓝色茎Andropogon hallii草hallii hallii hallii hallii pascopopyrum pascopyrum smithii smithii agropyron agropyron smithii smithii smithi smitha pleuraphis pleuraphis pleuraphis
摘要:甲烷植物是包括人类在内的哺乳动物消化道的Anaerobe Microbiota的成员。但是,对消化道甲烷剂的来源,获取方式和动力学的研究仍然很少。在这项研究中,我们旨在扩大动物的谱系,这些动物可以通过探索动物中的甲烷植物来探索人类的甲烷植物来源。 我们使用了实时PCR,PCR序列和多脚踏序列,用于研究此处研究的9种不同哺乳动物物种收集的407种粪便标本中的甲烷剂。 虽然所有阴性对照均为阴性,但我们通过pCR序列的七种不同种类的甲烷素获得了,其中三种(甲烷抗菌病史密斯,甲烷抗逆性millerae和甲烷二胺腔luminyensis)已知是人类消化剂中存在的甲烷植物的一部分。 在24例猪中发现了史密斯史,包括猪的12/24(50%),狗的6/24(25%),猫的4/24(16.66%),绵羊和马的1/24(4.16%)。 基因分型这24个史密斯(Smithii)揭示了五种不同的基因型,所有基因型都在人类中已知。 我们的结果相当代表了人类所驯化的某些动物的消化道中存在的甲烷原群落,必须进行其他研究,以尝试在这里培养分子生物学检测到的甲烷植物,以更好地了解动物中甲烷元的动力学,并通过与这些动物或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶进行直接接触,并可能通过直接与人类的甲基生成性获得。在这项研究中,我们旨在扩大动物的谱系,这些动物可以通过探索动物中的甲烷植物来探索人类的甲烷植物来源。我们使用了实时PCR,PCR序列和多脚踏序列,用于研究此处研究的9种不同哺乳动物物种收集的407种粪便标本中的甲烷剂。虽然所有阴性对照均为阴性,但我们通过pCR序列的七种不同种类的甲烷素获得了,其中三种(甲烷抗菌病史密斯,甲烷抗逆性millerae和甲烷二胺腔luminyensis)已知是人类消化剂中存在的甲烷植物的一部分。史密斯史,包括猪的12/24(50%),狗的6/24(25%),猫的4/24(16.66%),绵羊和马的1/24(4.16%)。基因分型这24个史密斯(Smithii)揭示了五种不同的基因型,所有基因型都在人类中已知。我们的结果相当代表了人类所驯化的某些动物的消化道中存在的甲烷原群落,必须进行其他研究,以尝试在这里培养分子生物学检测到的甲烷植物,以更好地了解动物中甲烷元的动力学,并通过与这些动物或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶或牛奶进行直接接触,并可能通过直接与人类的甲基生成性获得。
古细菌是人类微生物组的研究成分。在这项研究中,通过全基因组shot弹枪测序分析了来自不同地区的60名健康成年人的肠道考古组和BAC TERIOME。古细菌无处不在,在广泛的丰度中发现了高达7.2%。主要的古细菌门是甲烷杆菌,特别是家族甲烷科,涵盖了50个样本中超过50%的古细菌。先前被低估的热质量,主要由甲基菌科菌科组成,主要由10名受试者(> 50%)组成,并且在其他所有受试者中都存在。hal ubacteriota,唯一的其他古细胞门,以微不足道的浓度发生,除了两个样品(4.6 - 4.8%)。这一发现证实了人类的肠道考古体主要由甲烷生物体组成,在已知的甲烷生成途径中:i)Co 2的氢化含量减少是前主要的,是甲苯基抗逆性杆菌属,物种甲烷基revibacter smithii是主要的smithii smithii,这是样品中主要的甲苯胺史密斯。 ii)涉及甲烷二菌的第二个途径是甲基化合物的氢养分还原。 iii)似乎不存在乙酸盐或甲基化合物的声誉。共发生的分析允许在古细菌和细菌之间揭示塑造微生物群落的整体结构的相关性,从而可以描绘出人类肠道古学的更清晰图片。
solisd™BSM DNA聚合酶序列源自史密斯芽孢杆菌,包括专利的稳定性标签技术(图1)[1]。这种修饰使酶在升高温度下非常稳定(图2)。因此,不需要冷链的运输和装运便宜得多,便宜。*高温稳定性确保了巨大的产品质量,大大降低了环境影响,并促进了物流和处理。
摘要:在口服微生物毒素中,甲烷抗素的质量(M. assiliense)的研究次数少于良好的特征和培养的甲烷素甲烷素的Oralis和甲烷抗素的甲烷素化剂。M. assiliense与不同的口服病理相关,并与一种严重的牙周炎中与Synergistetes细菌Permidobacter Piscolens(P. piscolens)共隔离。在这里,报道另外两个坏死性纸浆病例,有机会表征两个共培养的M. assiliense分离株,均为P. piscolens,均为p. piscolens,为非运动,1-2- µ m长,0.6-0.8- µm-m-m宽gram-lam-wide gram-strosity coccobaccilli,它们在420 nmms中自动燃料。两个整个基因组序列具有31.3%的GC含量,无间隙为1,834,388-Base Pair染色体,表现为85.9%的编码率,编码甲酸甲酸盐脱氢酶,促进M. assiliense M. assiliense M. assiliense M. assiliense生长,而无需GG培养基中的氢。这些数据为理解与P. piscolens及其在口腔病理中的作用的共生性,跨性别的关联铺平了道路。
Aureus Volvox EHR。人类地(NOTH)Shihira的Shihira和坠毁的CraulsdönnzGrach Tetraedron(Reinsch)Hansg最低四重奏(A. Br)hansg hansg hansg hansg korsikov terrobulastic Tetraedron(Renesch。)hansg。tumulgor四卫(Reinsch)Hans oocystaceae孤立性。愤怒的焦虑。循环单磷酰(NYGAARD)NYGAARD水理网状(L)网状lagerh。双工踩踏变量。亚晶raCib Pediatum(Ehrenb)A。Br。 键入pedest(ehrenb)ralfs。 儿科测试。 fritsch。 至关重要的十字无限(Wolle)O。Kuntze。 异性和北海峡。) 云。 史密斯的史密斯(Chod)GM Smith。 Armatus场景。 bicaudatus(gugelmet)场景Mus cadal-authentics chdodat。 kutz的Dimorphth。 长场景 oblycils(turp)kutz。 穿孔方案var。 主要(Turner)Cob。 nov。场景Quadrica。 渴望(Chod)G.M Smith。 场景Quadraspiina Chodad。 史密斯史密斯。 Rabenhorst的亚ulotrichales。 班级CLS俱乐部(Linn)Kutz。亚晶raCib Pediatum(Ehrenb)A。Br。键入pedest(ehrenb)ralfs。儿科测试。fritsch。至关重要的十字无限(Wolle)O。Kuntze。异性和北海峡。)云。史密斯的史密斯(Chod)GM Smith。Armatus场景。bicaudatus(gugelmet)场景Mus cadal-authentics chdodat。kutz的Dimorphth。长场景oblycils(turp)kutz。穿孔方案var。主要(Turner)Cob。 nov。场景Quadrica。 渴望(Chod)G.M Smith。 场景Quadraspiina Chodad。 史密斯史密斯。 Rabenhorst的亚ulotrichales。 班级CLS俱乐部(Linn)Kutz。主要(Turner)Cob。nov。场景Quadrica。渴望(Chod)G.M Smith。场景Quadraspiina Chodad。史密斯史密斯。Rabenhorst的亚ulotrichales。班级CLS俱乐部(Linn)Kutz。
神经性厌食症(AN)是一种精神病,特别影响着青少年,主要是女性。这种麻烦的特征是对体重增加和畸形恐惧症的强烈恐惧,这导致了严重的饮食修复和极端的体重减轻行为,例如清除和不适当的体育活动。这种麻烦也涉及认知和情感障碍(美国精神病学协会,2013年)。在当前的病理生理假设中,微生物群和低分率炎症会影响微生物群 - 核脑轴的饮食行为(Gorwood等,2016)。审查了微生物数据,并证明了丁酸酯产生物种的减少,有利于粘蛋白降解细菌(Di Lodovico等,2020; Prochazkkova等,2021)。甲烷摩托杆菌史密斯(Smithii)似乎与体重不足和营养不良的患者有关,并且与An相关。在最近的一项评论中显示了门的显着下降和介绍:与健康对照组相比,富公司的丰富性,尤其是罗斯伯里亚,乳酸菌,链球菌和闭合膜的丰度较低(Carbone等人,2021年)。微生物组中细菌丰度的差异出现在限制性和暴饮暴食的亚型之间(Montexone等,2021)。这种微生物状态可能会干扰原位营养代谢,并诱导较少的保护性粘液层。所有这些都会影响肠道屏障的生理,其次,低级有害系统性炎症(Seitz等,2020)。在An中的渗漏肠综合症上未显示共识数据。基于活性的动物模型表现出肠道通透性(Achamrah等,2016;Jésus等,2014),而人类的研究尚未揭示出肠道通透性标记的增加(Kleppe等,2022; Monteleone等,2004)。在疾病的早期阶段,免疫状态似乎是炎症性的。与健康的
1. Kuehnast, T.、Kumpitsch, C.、Mohammadzadeh, R.、Weichhart, T.、Moissl-Eichinger, C. 和 Heine, H. 2024.《探索人类古生物组:其与健康和疾病的相关性及其与人类免疫系统的复杂相互作用》,FEBS 杂志。 10.1111/febs.17123 2. Zamyatina, A., Strobl, S., Zucchetta, D., Vasicek, T., Alessandro, M., Ruda, A., Widmalm, G. 和 Heine, H. 2024.《非还原糖支架能够开发具有皮摩尔效力的免疫调节 TLR4 特异性 LPS 模拟物》,Angew Chem Int Ed Engl:e202408421。 10.1002/anie.202408421 3. Heine, H.、Adanitsch, F.、Peternelj, TT、Haegman, M.、Kasper, C.、Ittig, S.、Beyaert, R.、Jerala, R. 和 Zamyatina, A. 2021.《使用二糖脂质 A 模拟物定制调节细胞促炎反应》,Front Immunol,12:631797。10.3389/fimmu.2021.631797 4. Vierbuchen, T.、Stein, K. 和 Heine, H. 2019.《RNA 正在造成损害:RNA 特异性 Toll 样受体对健康和疾病的影响》,Allergy,74:223-35。 10.1111/all.13680 5. Stein, K., Brand, S., Jenckel, A., Sigmund, A., Chen, ZJ, Kirschning, CJ, Kauth, M. 和 Heine, H. 2017.“树突状细胞对乳酸乳球菌 G121 及其 RNA 的内体识别是其抗过敏作用的关键”,《过敏与临床免疫学杂志》,139:667-78 e5。 10.1016/j.jaci.2016.06.018 6. Vierbuchen, T.、Bang, C.、Rosigkeit, H.、Schmitz, RA 和 Heine, H. 2017. “与人类相关的古细菌 Methanosphaera stadtmanae 通过其 RNA 被识别并诱导 TLR8 依赖的 NLRP3 炎症小体激活”,Front Immunol,8:1535。10.3389/fimmu.2017.01535 7. Bang, C.、Weidenbach, K.、Gutsmann, T.、Heine, H. 和 Schmitz, RA 2014. “肠道古细菌 Methanosphaera stadtmanae 和 Methanobrevibacter smithii 激活人类树突状细胞”, PloS one, 9: e99411。10.1371/journal.pone.0099411 8. Debarry, J.、Hanuszkiewicz, A.、Stein, K.、Holst, O. 和 Heine, H. 2010.《鲁氏不动杆菌 F78 的过敏保护特性是由其脂多糖赋予的》,过敏,65:690-7。 10.1111/j.1398-9995.2009.02253.x 9. Debarry, J.、Garn, H.、Hanuszkiewicz, A.、Dickgreber, N.、Blumer, N.、von Mutius, E.、Bufe, A.、Gatermann, S.、Renz, H.、Holst, O. 和 Heine, H. 2007.“从农场牛棚中分离出的鲁氏不动杆菌和乳酸乳球菌菌株具有很强的过敏保护特性”,过敏与临床免疫学杂志,119:1514-21。 10.1016/j.jaci.2007.03.023 10. Heine, H.、Kirschning, CJ、Lien, E.、Monks, BG、Rothe, M. 和 Golenbock, DT 1999.《切割