1. 执行摘要 当前,业界正在考虑的未来 HEP 设施(如μ子对撞机或下一代高能强子对撞机)将需要达到现有技术极限甚至超越现有技术能力的磁铁。从历史上看,先进磁铁技术的开发和成熟度展示可用于当前的 LHC 升级(称为高亮度 LHC 升级,HL- LHC),这得益于美国为期约 15 年的国家定向研发计划(称为 LHC 加速器研究计划,LARP)与通用和互补的研发工作(导体开发计划、通用加速器研发 GARD、大学计划等)的结合。在本白皮书中,我们建议建立一个类似的前沿技术和可行性指导计划(LEAF 计划),为在未来十年的时间范围内做出未来的对撞机决策做好准备。与其前身一样,LEAF 计划将依赖并协同目前美国由磁体开发计划 (MDP)、导体采购和研发 (CPRD) 计划和 HEP 办公室由早期职业奖 (ECA) 或实验室指导研发 (LDRD) 基金资助的其他活动所涵盖的通用研发工作。在可能的情况下,将强调与 DOE 或 NSF 其他办公室的协同努力的联系,并建议将其作为国家范围内更广泛的合作努力。国际努力也被提及为 LEAF 计划的潜在合作伙伴。我们设想 LEAF 计划将专注于展示用于 μ 子对撞机以及下一代高能强子对撞机的磁体的可行性,并在必要时并根据应用性质的要求,从研发模型过渡到长模型/原型。LEAF 计划将自然而然地推动加速器质量和实验界面设计方面的考虑。必要时,LEAF 还将专注于降低成本和/或工业化步骤。LEAF 计划预计将是一项为期十年的努力,始于 2024-2025 年左右,于 2034-2035 年左右完成。根据支持者的经验,我们建议 LEAF 计划的适当资助水平应为每年约 2500-3000 万美元,适用于所有参与者(美国国家实验室和大学)。
上述这些研究线索有两个共同特点:过去十年来进展显著加速,以及与量子信息科学和量子多体物理学之间的联系日益深入和核心。这些进展令人欣慰,但仍有许多未解之谜。边界系统中典型状态的本体对偶是什么?这与引发这些发展的防火墙悖论 [ 34 ] 有何关系?黑洞奇点的本质是什么?它在这一思想圈中扮演什么角色?这些想法如何超越 AdS 时空,尤其是延伸到类似于我们世界的宇宙学?黑洞各个微观状态的本体解释是什么?是否有可能在实验室中构建模型系统,让我们能够通过实验深入了解其中的一些问题?
主席通过创建与能量,强度和宇宙边界相同的仪器的雪地边界来确认仪器对粒子物理学对粒子物理学的基本重要性的战略决定(伊恩(Ian)是DPF椅子2011 - 2014年DPF椅子的成员)。
美国加利福尼亚州旧金山,美国加利福尼亚州旧金山,全国生物物理协会年度会议,2014年戈登研究会议,质子和膜反应,美国加利福尼亚州文图拉,2014年,2014年邀请研讨会,美国国家卫生研究院,美国国家卫生研究院,巴尔的摩,美国马里兰州,美国医学博士,2014年雪人夏季生物生物系统,烟囱,2014年,美国,雪地,2014年,雪诺,2014年,雪诺,2014年,美国雪诺,2014年,雪诺,2014年。美国刘易斯顿,美国,2015年落基山大会:EPR研讨会,美国科罗拉多州丹佛市,2019年NAMD开发人员研讨会(Virtual),伊利诺伊大学,美国伊利诺伊州乌尔巴纳尚eark urbana,美国伊利诺伊州,美国伊利诺伊州,2021年,2021年生物物理学会生物物理学,美国马里兰州巴尔蒂马尔大学,巴尔蒂马尔大学,美国米兰,2023年美国威斯康星州密尔沃基,美国威斯康星州,2023年,邀请研讨会(虚拟),维多利人血液研究所,美国威斯康星州密尔沃基,美国,2023年,
17.1 目的 17.2 定义 17.3 应用 17.4 转售程序 17.5 强制转售 17.6 租赁 17.7 豁免交易 17.8 解除限制 17.9 镇的补救措施 17.10 无担保或保证披露 17.1 目的。斯诺马斯村镇的目标是支持一支可行的劳动力队伍,并继续致力于提供最能平衡该镇特点和资源的劳动力住房机会。这些规则和条例实施了市政法规第 17 章第 1 条的规定,并应视为其中的一部分而强制执行。 17.2 定义 在这些条例中,下列词语应解释为具有以下定义的含义: 积极就业是指每年至少八 (8) 个月期间至少工作一千四百 (1400) 小时。
迄今为止,所有暗物质 (DM) 存在的证据都是通过其与可见物质的引力耦合获得的。另一方面,迄今为止所有对暗物质的直接探测搜索都必须假设与标准模型存在一些额外的耦合,例如 WIMP 的弱核耦合,或轴子的胶子/光子耦合。一个明显可取的目标是直接通过其引力耦合来搜索粒子 DM。最近,有人提出,通过地面实验 [1–3] 可以实现纯引力直接探测策略,尽管这非常具有挑战性。这一想法利用了光学或微波光机械传感设备的量子读出和控制方面令人难以置信的快速进展 [4–6]。这些设备已被证明是一个有前途的平台,可用于搜索大量暗物质候选者 [7],涵盖超轻 [8–11]、轻 [12] 以及 WIMP 级和更重的质量范围 [13]。特别是,参考文献 [14]。 [3] 表明,由至少 10 6 个机械传感器组成的大型阵列,每个传感器的质量在克级左右,可以对质量在普朗克尺度 m Pl ≈ 2 × 10 18 GeV ≈ 4 µg 左右的暗物质的引力特征敏感。有关这些超重暗物质候选者的概述,请参阅 Snowmass 2021 社区白皮书 [14]。在这份 Snowmass 白皮书中,我们概述了一项新兴的实验工作,我们将其称为 Windchime 项目,以开发此类暗物质探测器。核心计划是并行构建和操作许多量子限制机械加速度计阵列。这样的系统将能够独特地搜索大量有趣的信号,而引力暗物质探测是一个非常长期的目标。需要进行许多技术开发,涉及四个关键方面:热隔离、低于标准量子极限的量子测量噪声、传感器数量及其读数的扩展以及来自许多探测器的连续数据流的数据处理和分析技术。在开发这些技术的过程中,将实现许多短期物理机会,并且除了寻找暗物质之外,研发计划还将有大量应用。我们概述了技术挑战、物理机会、我们目前的努力以及实现长期计划的途径。
近年来,在基础概念提案 [1–3] 的基础上,许多作者讨论了进行实验室规模实验以探究引力量子性质的关键问题的想法 [4]。这些实验旨在检验微扰量子化广义相对论(被视为有效的量子场论 [5–8])是否正确描述了低能下的自然。已经提出了许多替代方案。其中包括涉及量子力学引力崩溃的模型 [9, 10]、混合经典-量子模型 [11–13]、引力作为一种新兴力量的模型 1 [15, 16],以及关于红外全息效应的想法 [17, 18]。在未来十年内可能实现的实验可以对这些模型做出决定性的陈述。在这份 Snowmass 白皮书中,我们简要概述了这个新兴的研究计划。我们对理论问题和实验实现提供了非详尽的展望,重点关注未来十年的主要未决问题和研究机会。我们特别强调需要详细的、理论一致的红外重力模型,该模型不同于标准引力子有效场理论。