人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
摘要 教学是一个复杂且需要认知的过程,也是一项非常有创造性的任务。必须精心准备一堂课才能确保有效、有目的的教学。如今,课程计划也经常使用标准软件(例如学习或内容管理系统)创建。显然,这种复杂的课程规划过程可以通过专门的软件系统来支持,这些软件系统不仅可以促进日常任务,还可以鼓励反思。本文阐述了基于人工智能技术的课程规划软件的理念和概念,以支持基于能力的学习。通过该软件,教师应该能够轻松直观地生成个性化的学习内容,而不会失去教学自由。通过各种用户场景,展示和解释了该软件的可能性。最后,本文旨在提高人们对此类智能学习环境的认识,以及它们如何实现终身教育链中学习内容的自动化开发。
气枪游戏不是竞赛。没有赢家或输家。气枪游戏的真正精神是团队精神和友谊。尽管如此,总有少数人作弊,有些人作弊一次,有些人经常作弊。对这些玩家大喊大叫或咒骂大多是无效的,会对游戏和您的体验产生负面影响。如果其他玩家没有受到打击,请不要争论或咒骂他们。我们要求所有玩家避免在游戏区域讨论规则,如果您觉得确实需要讨论某些事情,请与游戏管理员或您的总部交谈。记下违规玩家的臂章号码。我们认为关于人们没有受到打击的争论与作弊本身一样糟糕。开始争论可能会导致被禁止参加游戏。(请记住:宁可多打一球,也不要少打一球。)
• 该病的特征是发烧、浅表淋巴结肿大以及皮肤和粘液上出现多个结节。 • 与本土品种相比,泽西牛和 HF 等外来品种的牛由于免疫力低,更容易感染。 • LSD 也会影响水牛,但影响程度不如牛,因为水牛的免疫力比牛高。 • 该病在非洲流行,但在过去 2-3 年里,在侵袭印度南部各州后,LSD 疫情蔓延到旁遮普邦和印度北部的其他各州。 • 在亚洲,该病于 2019 年首次在中国报告,然后在孟加拉国和印度报告。 • 2019 年,印度首次报告 LSD 病,报告地点为奥里萨邦。 • 非洲非洲水牛可能是这种病毒的野生宿主。 • LSDV 的宿主范围有限,不会感染非反刍动物。 • 因此,即使与受感染的牛密切接触,绵羊和山羊也不会患上 LSD。 • 病毒仍存在于环境中,并在受害者的免疫力下降时发作。 • 这主要是媒介传播疾病,通过吸血媒介传播,如蚊子、蜱虫、家蝇等。 • 它也通过直接接触受感染牛的粘液传播。 • 所有品种、性别和年龄组的牛都易受 LSDV 感染。 • 然而,较年轻的动物可能更容易患上严重形式的疾病。 • 病毒攻击循环
https://i0.wp.com/sitn.hmvard.ip-contant/08/28/anlyohasitine-sitine-2
许多蛋白质家族由多种高度同源蛋白组成,无论它们是由不同基因编码还是来自相同基因组位置的编码。某些同工型的优势与各种病理状况(例如癌症)有关。研究中蛋白质同工型的检测和相对定量通常是通过免疫印迹,免疫组织化学或免疫荧光来完成的,其中使用针对特定家族成员的同工型特异性表位的抗体。但是,同工型特异性抗体并非总是可用的,因此无法破译同工型特异性蛋白表达模式。在这里,我们描述了多功能11氨基酸标签的插入到感兴趣蛋白质的基因组位置中。此标签是开发的,由Promega(美国威斯康星州Fitchburg)发行。本协议描述了高度同源蛋白的精确蛋白质表达分析,通过hibit标签的表达,当缺失特定抗体时,可以实现蛋白质表达定量。可以通过传统方法(例如蛋白质印迹或免疫荧光)以及在荧光素酶二元报道器系统中分析蛋白质表达,从而可以使用板读取器进行可靠且快速的相对表达定量。
讲座-3 模糊逻辑当我们说模糊逻辑时,那就是我们在物理设备中遇到的变量,模糊数字用于描述这些变量,并且在设计控制器时使用此方法,它就是模糊逻辑控制器。 - 让我们采取三个陈述:零,几乎零,接近零。 - 零恰好是零,真值为 1 - 如果它几乎为 0,那么我可以认为在负 1 到 1 之间,0 附近的值是 0,因为这几乎为 0。
载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
表征功率器件的击穿前行为对于故障机制的寿命建模至关重要,其中主要驱动力是碰撞电离。特别地,设计坚固的功率器件并定义其安全工作区需要定量表征反向偏置结中的电荷倍增。这对于像陆地宇宙射线产生的单粒子烧毁 (SEB) 这样的机制尤其必不可少,其中撞击辐射通过碰撞电离在反向偏置器件中产生大量电荷,该电荷被传输并最终通过局部电场倍增。对抗 SEB 的主要技术措施是在设计阶段进行现场定制以及在器件使用过程中降低反向/阻塞偏置。在这种情况下,通常使用载流子倍增开始的电压偏置作为定义工作条件下电压降额标准的标准 [1、2]。在实际应用中,降额系数通常在器件额定电压 V rated 的 50% 到 80% 之间。定义正确的降额系数至关重要。如果设置得太低,则需要具有更高 V 额定值的器件,从而导致更高的损耗和成本。相反,如果设置得太高,则导致的现场故障率可能变得过高。目前,降额系数是通过寿命测试或
Cloud提供了机会,可以在不管理身体基础设施的情况下释放更大的灵活性和效率,但是迁移成功取决于仔细执行。我们没有任何机会,确保关键操作继续不间断。我们的团队指导您完成旅程的每一步;分析您当前的环境,为云的系统做好准备,并在到达那里后优化成本和性能。我们甚至可以重新构造您的应用程序部分,以确保与所选环境的兼容性。