在美国内布拉斯加州,立方体卫星被用于测量地面水的蒸发量,分辨率达到 3 米。立方体卫星产生的数据与地面气象塔的地面数据进行了比较。尽管这些地面塔也可以成为测量水蒸发量并利用数据预测和检测干旱的解决方案,但使用立方体卫星更为可行。农民维护地面设备并不断检查的成本将高于使用立方体卫星。这些立方体卫星还显示出与地面数据(来自地面仪器)的高度相关性。下面的数据显示了内布拉斯加州三个不同田地的每日蒸发率,以及卫星数据和地面塔数据(红线和蓝线)的相关性。如果将地面塔数据视为可接受值,则卫星数据的 r^2 为 0.86–0.89,平均绝对误差在 0.06 至 0.08 毫米/小时之间。 (Aragon 等人,2021 年),从而展示了如何使用立方体卫星数据来取代这些传统的气象塔。:
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
本报告是关于添加剂制造的概念和过程的介绍。使用添加剂制造技术,在该项目的金属(钢)上进行了模拟。在对金属粉末床添加剂制造过程的模拟中,我们得到了主要发现,例如温度场,残留应力和熔体池特性,这些特征发生在金属中。选择性激光烧结是一种著名的金属添加剂制造工艺,用于在床上融化粉末金属,并形成一块所需材料的金属板,并通过一层形成一层,并融化金属粉末。基于许多审查的研究,在将仿真转换为增材制造业工业应用工具的背景下,确定了许多未来的方向。应开发出智能建模方法,必须在增材制造模拟中进一步表征和标准化材料及其特性,并且必须开发模拟,并且需要成为现代数字生产链的一部分。
Repsol 是一家全球性多能源公司,致力于到 2050 年实现净零排放。该公司业务遍及整个能源价值链,拥有 25,000 名员工,产品销往 90 多个国家,服务客户达 2400 万。Repsol 是西班牙能源零售市场的主要参与者,客户超过 200 万,全球可再生能源组合已超过 2,800 兆瓦,在西班牙、美国、智利、意大利和葡萄牙拥有 60 吉瓦的风能和光伏设施项目。
封面图片:2021 年 2 月冬季风暴 Uri 过后的德克萨斯州奥斯汀。图片来源:Roschetzky Photography via Shutterstock,
个性化和精确药物的长期目标是为具有疾病的患者准确预测给定治疗方案的结果。目前,由于患者群体中的潜在因素导致对感兴趣的药物的反应或对治疗相关的不良事件的反应不佳,因此许多临床试验无法满足其终点。事先确定这些因素并纠正它们可能会导致临床试验的成功增加。通过对健康和患病个体的OMICS进行综合和大规模的数据收集工作,导致了宿主,疾病和环境因素的宝藏,这有助于旨在治疗疾病的药物的有效性。随着OMICS数据的增加,人工智能允许对大数据进行深入分析,并为现实世界中的临床使用提供了广泛的应用,包括改善患者的选择和鉴定可行的伴侣疗法靶标,以改善更多患者的可转换性。作为用于复杂药物疾病 - 宿主相互作用的蓝图,我们在这里讨论了使用OMICS数据预测使用免疫检查点抑制剂(ICIS)预测癌症免疫疗法的反应和不良事件的挑战。基于OMICS的方法是改善患者结局的方法,因为在ICI病例中也已应用于广泛的复杂疾病环境中,体现了OMIC在深度疾病分析和临床使用中的使用。
基于变压器的模型已在包括图像超级分辨率(SR)在内的低级视觉任务中取得了显着的结果。但是,在获得全球信息时,基于不重叠的窗口中依赖自我注意的早期aperach遇到了挑战。为了激活全球更多输入像素,已经提出了混合注意模型。此外,通过仅将像素的RGB损失(例如L 1)降至最低而无法捕获基本的高频降低,训练不足。本文提出了两种贡献:i)我们引入了卷积非本地稀疏注意(NLSA)块,以扩展混合变压器体系结构,以增强其接受场。ii)我们采用小波损失来训练变压器模型,以提高定量和主观性能。虽然先前已经探索过小波损耗,但在基于训练变压器的SR模型中显示了它们的力量是新颖的。我们的实验结果表明,所提出的模型在各种基准数据集中提供了状态的PSNR结果以及出色的视觉性能。
基于Li-Garnet Li 7 La 3 Zr 2 O 12(LLZO)电解质的抽象固态锂离子电池近年来已经快速发展。与常规的基于电解质的同行相比,这些固态系统有望满足对安全,不易用和耐温温度的储能电池的迫切需求。在本愿景文章中,我们回顾了当前的研究追求,并讨论了LLZO固态电解质(SSE)用于固态电池的局限性。特别强调了对固态阴极,LLZO SSE和LI金属阳极层制造目前方法论的利弊的讨论。此外,我们讨论了固态阴极中LLZO厚度,阴极面积容量和LLZO含量在Li-Garnet固态电池的能量密度上的贡献,总结了它们所需的值,以匹配常规液体系统的能量密度。最后,我们重点介绍了朝着最终的Li-Garnet固态电池商业化时必须解决的挑战。
ConnectGen 总部位于德克萨斯州休斯顿,是一家可再生能源开发商,采用多种技术方法,拥有完整的内部开发能力,尤其擅长美国陆上风电项目。ConnectGen 的开发项目包括美国最具吸引力的能源地区不同成熟度的 20,000 兆瓦陆上风电、太阳能和储能项目。该项目意味着 Repsol 进入美国陆上风电行业,该行业是全球最大、增长潜力最高的市场之一。ConnectGen 还将使 Repsol 能够在美国强大的可再生能源能力和国际深厚专业知识的基础上再接再厉,增加一个重要的风电增长平台,以补充通过 2021 年收购 Hecate Energy 40% 股份获得的太阳能和储能开发能力。