电子束-粉末床熔合 (EB-PBF) 技术中通常沿构建方向形成柱状晶结构,导致物理和机械性能各向异性。本研究模拟了铸件凝固条件,并在 EB-PBF 中促进了原位再结晶,以促进 718 合金中柱状晶到等轴晶结构转变。这是通过独特的线性熔化策略以及 EB-PBF 中特定的工艺参数选择来实现的。研究发现,使用线序号 (LON) 函数的定点熔化会影响冷却速度和温度梯度,从而控制晶粒形貌和织构。高 LON 会产生大的等轴晶粒区和随机织构,而固定的 LON 和高面能量密度会产生强织构。研究了转变过程中形成裂纹和收缩缺陷的主要驱动力。固定面能量密度下的高 LON 减少了平均总收缩缺陷和裂纹长度。硬度在转变过程中降低,这与 γ ′′ 沉淀物尺寸的减小有关。
摘要:激光定向能量沉积(LDED)是金属增材制造的重要组成部分之一,具有成型速度快、成型体积大、适合零件修复等特点。LDED以激光束为热源,通过快速加热、熔化、凝固、冷却等工艺,逐层制造零部件。然而,由于热循环和加工环境复杂,LDED生产零部件的沉积质量和重复性较差,阻碍了该技术的推广。自适应控制技术(ACT)一直被认为是解决该问题的有效且潜在的方法。随着监测设备和数据处理技术的发展,许多研究集中在LDED上,建立了工艺参数、工艺特征和产品质量之间的关系,促进了ACT的快速发展。本文对LDED的ACT中存在的问题进行了回顾和讨论。© 2020 光学仪器工程师学会(SPIE)[DOI: 10.1117/1.OE.59.7.070901 ]
航空航天制造/制造能源数值方法 AME320 空气动力学 AME410 增材制造 AME444 应用热力学 AME431 Num Meth 流体力学。 AME321 飞机性能 AME489A 制造技术 微型和纳米设备 AME430 中级热力学 AME463 使用 ANSYS 进行有限元分析 AME323 气体动力学 MSE414 铸件凝固 AME442A HVAC 系统设计 MSE350 MSE 中的数值方法(Python) AME324C 航空航天结构 SIE383 集成制造系统 AME442B 高级 HVAC 系统分析与设计 AME425 航空航天推进 SIE483 计算机集成制造 AME445 可再生能源 AME426 火箭推进 AME446 燃料电池设计 AME427 稳定/控制航空 AME480 核能简介 AME429 行星际任务设计 CE476 开发下一代锂离子电池 AME457 轨道力学和太空探索 MSE 424 应用太阳能材料 SIE452 空间系统工程 SIE456指导基金/航空系统
新兴添加剂制造技术提供的多功能性(例如,3D打印和按需沉积)使得个性化医学的快速生产能够产生。这些技术的按需定制功能为护理或分布式药物制造和复合应用提供了新的途径。设计原理的质量用于调查狭窄治疗指数(WARFARIN),选择性5-羟色胺再摄取抑制剂(Citalopram)和医学对策(DoxyCycline)药物的固体片剂剂型的生产。我们检查了药物片剂赋形剂半固体挤出和点播的活性药物成分(API)墨水的临界材料属性,关键过程参数和关键质量属性。详细的研究优化了API墨水配方 - 特别是相对于片剂半固体赋形剂,赋形剂温度和物理状态(即固体vs液体)和固化时间 - 允许API,赋形剂混合和重新分布。个性化药物剂量,调整剂量和锥形方案是制造的,证明了准确的API数量和所需的生产内容均匀性,如
1。多壁碳纳米管对AL-12%Si合金,Anuruddha Majumder,Dipankar Chatterjee,Sambhunath Nandy的固化过程的影响(Today Communications,Accpeted,2023年)。2。在共晶的Al-Si液体中的主要硅沉淀上进行固体转化,Anuruddha Majumder,Dipankar Chatterjee,Sambhunath Nandy(材料科学与工程学中的建模和模拟,第1卷31,pp。075004,2023)。3。混合对流流经过反向双线,例如旋转的侧面圆柱体,NVV Krishna Chaitanya,Dipankar Chatterjee(热传递工程,被接受,2023年)。4。交叉热浮力在低雷诺数下并排圆柱体周围的流动过渡,Krishna Chaitanya NVV,Dipankar Chatterjee,Bittagopal Mondal(热分析和热量分析杂志,卷,148,pp。2933,2023)。5。横向磁场对抑制虚张声器物体上的纳米流体流量不稳定性的功效571,pp。170582,2023)。
随着可再生能源的使用日益增多,为了提高电力弹性(在调节储备能力的同时承受供需之间显著和突然的不平衡的能力),热电厂系统的涡轮旁路系统等中采用了储热系统,以便可以储存启动期间的废热或极低负荷条件下锅炉和涡轮/发电机输出之间的不匹配热量。这种储存的热量可以在高负荷运行时将其能量释放到预锅炉和/或锅炉来发电,从而节省约 2% 或更多的能源。通过利用相变材料(PCM:应用熔化/凝固过程)的大量潜热或通过增加熔盐和水等显热存储材料的温差,可以使储热设备变得紧凑,从而可以安装在发电厂内。我们目前正在开发这种系统,以与电池存储系统相当的单位电容量价格实现其实际应用。| 1. 简介
当我开始研究这个主题时,我不知道NASA科学家已经在太空中制造了半导体晶体。1992年,美国宇航局在航天飞机哥伦比亚船上推出了第一个美国微重力实验室,那里的宇航员生产了两种晶体,其中包括一种称为艾森尼甘露尼德岛的材料。最近,科学家在太空中制造了光纤电缆材料,可以以增强的清晰度传输激光器和互联网信号。加快速度后,我致力于设计自己的空间实验。挑战之一是找出我在车站上可以使用哪些工具。制造半导体晶体或材料通常需要高温,这可能是危险的。ISS上的大多数设备都是针对以冷却器更安全温度运行的生物学实验量身定制的。对我和我的团队来说,幸运的是,有一台名为“ subsa”的小机器(使用密封座椅中的挡板固化),类似于您在半导体的清洁室中可以看到的炉子。它可以达到850摄氏度 - 出于我们的目的而热。
(实际覆盖范围将取决于课程和草稿课程计划(通过培训的投入准备)(课程涉及有限数量的常规讲座,相当多的自我学习和在选定主题上的学生研讨会的一系列积极系列)从先前的数学课程中审查某些主题(例如,在相关的数学方程中的示例中,对属性的计算机的应用中的示例)是金属元素的应用程序),它是金属元素的介绍)))))冶金热力学(例如晶体结构背后的数学)指示使用在该领域中有用的技术软件(例如Mathematica,Matlab,Matlab)的讨论与此处列出的基本原理的讨论(例如,在此列出的主题)上,随后是对选定的主题(来自此列表)的学生研讨会(来自该列表:数学的材料组合构图中的数学应用程序),这些技术构成了数学的应用程序,这些材料构成了概念学的概念信息,这些概念学构图中的概念图中的应用程序构成了概念学的构图。化学脱位模型,以研究材料研究对分形几何形状的失败,用于开发的高级材料基础知识的基本原理二进制合金Kapoor的固化动力学Kapoor和Frohberg模型,用于多组分槽的数学方面冶金热力学的数学方面Markov链和过程
摘要。增材制造 (AM) 是一种先进的方法,可逐层制造复杂零件,直至达到所需的设计。激光粉末床熔合 (L-PBF) 用于生产高分辨率的零件,因为层厚度低。L-PBF 基于激光束和材料的相互作用,其中粉末材料被熔化然后凝固。这发生在 0.02 秒的短时间内,使得整个过程难以实时研究。研究表明,数值方法的发展和模拟软件的使用可以理解激光束和材料的相互作用。这种现象是理解材料在熔化状态下的行为以及 L-PBF 工艺生产的零件的机械性能的关键,因为它与熔化的粉末材料的凝固直接相关。需要在微观和中观尺度上详细研究激光束和材料的相互作用,因为它可以提供更好的理解并有助于开发用于 L-PBF 工艺的给定材料。本综述全面了解了 AM 中使用模拟的背景以及感兴趣的特征的不同模拟尺度。