胶质母细胞瘤多形(GBM)是最具侵略性的脑肿瘤形式,5年生存率小于10%。数据支持在肿瘤质量中选择细胞群体(称为脑肿瘤引发细胞(BTICS))是GBM生长的驱动因素。尽管这些细胞的真实起源是有争议的,但从生理上讲,这些细胞具有正常神经干细胞的不成熟特性。将它们高度抵抗药物治疗,放射线并在移植到小鼠中时以高速率形成肿瘤。增加了GBM的复杂性是事实是,并非所有肿瘤都是相同的。大多数患者可以使用现代遗传工具将至少3种不同的GBM“亚型”分组。该项目以令人兴奋的数据为基础,表明在脑发育过程中,在正常的神经干细胞中发现了独特的细胞周期调节剂SPY1(或其他组的RINO),但是它控制了BTIC的扩展。了解GBM异质质量中哪些特定的BTIC种群是由SPY1驱动的,以及这是否取决于亚型,可能代表新颖有效的治疗策略。
自2001年首次示威以来[Gol'tsman等。,应用。物理。Lett。 79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。Lett。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。,adv。选择。Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。,J。Opt。19,043001(2017)]。在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。通过理论分析,我们表明,通过提高我们读取电路的信噪比和带宽,可以进一步改善所证明的检测器的PNR性能。我们的结果对于光学量子计算和量子通信的未来都是有希望的。
图1。城市峡谷的概念示意图代表CLMU中的城市景观(改编自Oleson等,2008a)。特性是颜色编码的:蓝色用于辐射,橙色用于热和绿色的形态学。请注意,屋顶和壁厚(尽管与城市形态相关)被认为是热特性,因为它们主要用作加权因素,以计算CLMU中峡谷表面的传导通量(Lawrance等,2018; Oleson等人,2010年)。165
K。IDA 1,∗,M。Yushuma1,2,M。Cobayshi1,2,T。Cobayashi1,2,N。Kenmochi1,2A,F。Nespoly 3,,R.M. magee 4,F。温暖5,A。Denclage 5,A。Matsuyama 6,R。Sakamoto 1,2,T。Nasu 2,T。Tocuzawa,T。Tocuzawa,2,T。Kinoasha,T。Kinoasha,T。T. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1A,K。Nagaoka 1,8,M.Nishura 1,9,Y. Tkemura 1,9,Y。Tkemura 1,2.1,2 Vara 12An,W.H.J。 hayashi 13a,M。Markle14,H。Bouver5,Y。Liang15an,M。Leconte16an,D。Moseev5,V.E。 Moiseenko 17,C.G。 Albert 14,I。Allfrey 4,A。Alonso 18,F.J. Arelono 19,N。Ashiker 1,2,A。Azgamy 8,L。Bardoczi 20,M。VanBeckel 21,M。Beurskind5,M。Beurskind5,M.W. Binderbue 4,A。Bortolon 3,S。Brezensect 15,22,R。Bussiana 5,A。Cappa 18,D。Carrara 18,I.C。 Chan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。Kawachimagee 4,F。温暖5,A。Denclage 5,A。Matsuyama 6,R。Sakamoto 1,2,T。Nasu 2,T。Tocuzawa,T。Tocuzawa,2,T。Kinoasha,T。Kinoasha,T。T. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1A,K。Nagaoka 1,8,M.Nishura 1,9,Y. Tkemura 1,9,Y。Tkemura 1,2.1,2 Vara 12An,W.H.J。 hayashi 13a,M。Markle14,H。Bouver5,Y。Liang15an,M。Leconte16an,D。Moseev5,V.E。 Moiseenko 17,C.G。 Albert 14,I。Allfrey 4,A。Alonso 18,F.J. Arelono 19,N。Ashiker 1,2,A。Azgamy 8,L。Bardoczi 20,M。VanBeckel 21,M。Beurskind5,M。Beurskind5,M.W. Binderbue 4,A。Bortolon 3,S。Brezensect 15,22,R。Bussiana 5,A。Cappa 18,D。Carrara 18,I.C。 Chan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。Kawachihayashi 13a,M。Markle14,H。Bouver5,Y。Liang15an,M。Leconte16an,D。Moseev5,V.E。 Moiseenko 17,C.G。 Albert 14,I。Allfrey 4,A。Alonso 18,F.J. Arelono 19,N。Ashiker 1,2,A。Azgamy 8,L。Bardoczi 20,M。VanBeckel 21,M。Beurskind5,M。Beurskind5,M.W. Binderbue 4,A。Bortolon 3,S。Brezensect 15,22,R。Bussiana 5,A。Cappa 18,D。Carrara 18,I.C。 Chan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiMoiseenko 17,C.G。 Albert 14,I。Allfrey 4,A。Alonso 18,F.J. Arelono 19,N。Ashiker 1,2,A。Azgamy 8,L。Bardoczi 20,M。VanBeckel 21,M。Beurskind5,M。Beurskind5,M.W. Binderbue 4,A。Bortolon 3,S。Brezensect 15,22,R。Bussiana 5,A。Cappa 18,D。Carrara 18,I.C。 Chan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiAlbert 14,I。Allfrey 4,A。Alonso 18,F.J. Arelono 19,N。Ashiker 1,2,A。Azgamy 8,L。Bardoczi 20,M。VanBeckel 21,M。Beurskind5,M。Beurskind5,M.W. Binderbue 4,A。Bortolon 3,S。Brezensect 15,22,R。Bussiana 5,A。Cappa 18,D。Carrara 18,I.C。 Chan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiBinderbue 4,A。Bortolon 3,S。Brezensect 15,22,R。Bussiana 5,A。Cappa 18,D。Carrara 18,I.C。 Chan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiChan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiChan 9,J。Cheng 9,X。DI 9,D.J。 然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。Kawachi然后Hartog 23,C.P。 Dhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M. Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiDhard 5,F。Ding24,A。Ejiri9,S。Etmer15,T。Fornal25,K。Fujita8,Y。Fujiwara13,H。Funaba1,L。Garcia26,J。Funaba1,J。Funaba1,L。Garcia26,J.M.Garcia-Regana 18,I。Garcia-Cortés18,即 Garkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiGarkusha 27,D.A。 Gates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiGates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiGates 28,Y。Ghai 29,E.P。 吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。Kawachi吉尔森3,H。Gota 4,M。Goto 1,2,E.M。Green 11,V。Hawk 5,S。Hamaguchi Igami 1,2,K。Ikeda 1,S。Ingaki 34,A。Ishizawa 35,A。Ishizawa 35,S. 38,Y。KawachiCassocov 39,V。Cluster4,A。CNIS 15,W.H.国家16号,圣科巴亚西34号,F。Koike40,Yu.V. Cow 27,M。Kubkowska25,S。Kubo1,41,S.S.S.H. Lam 42,A。Langenberg 5, McCarthy 18,D。Medin-Roque 18,O。Midara45,A。Mollen3,C.,S。Murakami11,T。Murase1,C.M。 Muscatello 20,K。Nagasaki 34,D。Naujaks 5,H。Nakano 1,M。Nakata 1,2,Y。 Nishawa 30,St.Nishimoto 8, 患者3,N。Panadero 18,B。Peterson 1,J. of the Villen代表18,J。Romazanov 15,J。Rosato 46,M。Rud 47,S。 Sacaue 1 , 2 , H. Sakai 7 , I. Sakon 48 , M. Saito 47 , St. Street 49 , St. Sereda 23 , T. Standing 5 , K. Satake 1 , R. Seki 1 , T. Seki 1 , S. Sharapov 50 , A. Shimizu 1 , 2 , T. Shimosum 1 , G. Shivam 1 , M. Shoji 1 , D.A. Spong 29,H。Sugma 1,2,Z。 Sun 3,C。Suzuki1,2,Y。Suzuki51,T。Tajima4,E 主题41,G。Ueno 53,H。Uehara 1,2,J.L。 Vescoe 18,E。Wang15,K.Y。 Zhong 24,Q。Zho。国家16号,圣科巴亚西34号,F。Koike40,Yu.V.Cow 27,M。Kubkowska25,S。Kubo1,41,S.S.S.H. Lam 42,A。Langenberg 5, McCarthy 18,D。Medin-Roque 18,O。Midara45,A。Mollen3,C.,S。Murakami11,T。Murase1,C.M。 Muscatello 20,K。Nagasaki 34,D。Naujaks 5,H。Nakano 1,M。Nakata 1,2,Y。 Nishawa 30,St.Nishimoto 8, 患者3,N。Panadero 18,B。Peterson 1,J. of the Villen代表18,J。Romazanov 15,J。Rosato 46,M。Rud 47,S。 Sacaue 1 , 2 , H. Sakai 7 , I. Sakon 48 , M. Saito 47 , St. Street 49 , St. Sereda 23 , T. Standing 5 , K. Satake 1 , R. Seki 1 , T. Seki 1 , S. Sharapov 50 , A. Shimizu 1 , 2 , T. Shimosum 1 , G. Shivam 1 , M. Shoji 1 , D.A. Spong 29,H。Sugma 1,2,Z。 Sun 3,C。Suzuki1,2,Y。Suzuki51,T。Tajima4,E 主题41,G。Ueno 53,H。Uehara 1,2,J.L。 Vescoe 18,E。Wang15,K.Y。 Zhong 24,Q。Zho。Cow 27,M。Kubkowska25,S。Kubo1,41,S.S.S.H.Lam 42,A。Langenberg 5,McCarthy 18,D。Medin-Roque 18,O。Midara45,A。Mollen3,C.,S。Murakami11,T。Murase1,C.M。Muscatello 20,K。Nagasaki 34,D。Naujaks 5,H。Nakano 1,M。Nakata 1,2,Y。Nishawa 30,St.Nishimoto 8, 患者3,N。Panadero 18,B。Peterson 1,J. of the Villen代表18,J。Romazanov 15,J。Rosato 46,M。Rud 47,S。 Sacaue 1 , 2 , H. Sakai 7 , I. Sakon 48 , M. Saito 47 , St. Street 49 , St. Sereda 23 , T. Standing 5 , K. Satake 1 , R. Seki 1 , T. Seki 1 , S. Sharapov 50 , A. Shimizu 1 , 2 , T. Shimosum 1 , G. Shivam 1 , M. Shoji 1 , D.A. Spong 29,H。Sugma 1,2,Z。 Sun 3,C。Suzuki1,2,Y。Suzuki51,T。Tajima4,E 主题41,G。Ueno 53,H。Uehara 1,2,J.L。 Vescoe 18,E。Wang15,K.Y。 Zhong 24,Q。Zho。Nishawa 30,St.Nishimoto 8,患者3,N。Panadero 18,B。Peterson 1,J. of the Villen代表18,J。Romazanov 15,J。Rosato 46,M。Rud 47,S。Sacaue 1 , 2 , H. Sakai 7 , I. Sakon 48 , M. Saito 47 , St. Street 49 , St. Sereda 23 , T. Standing 5 , K. Satake 1 , R. Seki 1 , T. Seki 1 , S. Sharapov 50 , A. Shimizu 1 , 2 , T. Shimosum 1 , G. Shivam 1 , M. Shoji 1 , D.A.Spong 29,H。Sugma 1,2,Z。Sun 3,C。Suzuki1,2,Y。Suzuki51,T。Tajima4,E主题41,G。Ueno 53,H。Uehara 1,2,J.L。Vescoe 18,E。Wang15,K.Y。 Zhong 24,Q。Zho。Vescoe 18,E。Wang15,K.Y。Zhong 24,Q。Zho。Zhong 24,Q。Zho。Watanabe 1,35,T。Wauter 54,U。Wenzel5,M。Yajima1,I。Yajima1,R。Yanai1,R。Yasuhara1,Y。Yoshimura55,M。Zarnstorff3,M。Zarnstorff3,M。Zhao1,G.Q。M. Zhao 1,G.Q. div>
自2001年首次示威以来[Gol'tsman等。,应用。物理。Lett。 79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。Lett。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。,adv。选择。Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。,J。Opt。19,043001(2017)]。在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。通过理论分析,我们表明,通过提高我们读取电路的信噪比和带宽,可以进一步改善所证明的检测器的PNR性能。我们的结果对于光学量子计算和量子通信的未来都是有希望的。
PMT数据:物理研究中的核仪器和方法A:加速器,光谱仪,检测器和相关设备,926,2-15。spad数据:芯片(2022):100005。TES数据:量子光学中的超导设备(2016):31-60。其他缺失的数据:自然光子学3.12(2009):696-705。
博士研究将有助于确定利用现有隧道承载由高温高压液体组成的可再生能源储存系统的可行性,研究它们与未来供热网络的整合,包括社会接受度和成本效益。在意大利和欧洲城市地区,许多废弃或废弃的现有地下空间可以从智能和可持续的方法中受益,并重新开发用于能源目的,对社会经济活动产生积极影响。通过确定创新技术解决方案的规模、监测和分析实验场地的数据以及数值建模来了解用于储存的隧道衬砌和周围土壤的热-水-机械行为,将实现最先进的技术进步。通过增加对能源地质结构的行为和适用性的一般了解,即地下结构(桩、挡土结构、隧道衬砌)的热激活,将增强这一成果。该研究将与工程公司 Geosolving Srl 共同进行,该公司对实际应用感兴趣
快速溶解的药物输送系统是由传统剂型制作的,用于为慢性病使用药物。快速溶解膜比传统的片剂和胶囊更受欢迎,可以掩盖药物的苦味以增强患者的依从性。迅速溶解的膜由一个超薄的条带组成,该条带放在舌头上时溶解了一分钟。溶解的口服薄膜(如呼吸条)在过去几年中一直可用,并且被消费者备受关注,用于管理维生素,疫苗和其他药物。审查还彻底解释了膜制作中使用的不同方法。当前的评论概述了与快速散落电影有关的最新专利。对用于评估这些电影的许多因素进行了简短的分析。关于长期疾病,快速溶解的膜比传统的口服形式更有效地给药药物和更快的治疗血液水平。