抽象的人类加速区域(HAR)在物种之间是高度保守的,但表现出显着的人类特异性序列变化,这表明它们可能在人类进化中获得了新的功能。hars包括具有人类特异性活性的转录增强子,并与人脑的进化有关。然而,我们对Hars如何促进大脑独特的人类特征的理解受到了对Har har统治的基因和途径的洞察力的阻碍。目前尚不清楚Hars是通过改变har及其黑猩猩直系同源物之间的基因靶标的表达而作用的,还是通过在人类中获得新的基因靶标,这是一种称为增强子劫持的机制。,我们在人和黑猩猩神经干细胞(NSC)中生成了1,590个har及其直系同源物的染色质相互作用的高分辨率图,以全面地识别这两个物种中的基因靶标。hars及其嵌合式直系同源物的目标是一组2,963个基因,这些基因富含神经发育过程,包括神经发生和突触传播。HAR增强剂活性的变化与保守基因靶标表达的变化相关。保守的靶标在人与黑猩猩NSC之间或人类和非人类灵长类动物发展和成人大脑之间差异表达的基因中富集。特异性的HAR基因靶标未在已知的生物学功能上融合,并且在差异表达的基因中没有显着富集,这表明Hars不会通过增强子劫持来改变基因表达。har Gene靶标,包括差异表达的靶标,还显示了发育中的人脑中的细胞类型特异性表达模式,包括外部径向胶质细胞,这些模式有助于人类皮质膨胀。我们的发现支持Hars通过改变保守基因靶标的表达来影响人脑的演变,并提供与新型人类大脑特征联系起来的手段。
自2001年首次示威以来[Gol'tsman等。,应用。物理。Lett。 79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。Lett。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。,adv。选择。Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。,J。Opt。19,043001(2017)]。在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。通过理论分析,我们表明,通过提高我们读取电路的信噪比和带宽,可以进一步改善所证明的检测器的PNR性能。我们的结果对于光学量子计算和量子通信的未来都是有希望的。
机电工程中的人工智能:ESPRIT 模型 Mohamed Hedi Riahi、Nadia Ajailia ESPRIT 工程学院 摘要 近十年来,人工智能 (AI) 蓬勃发展,现已涵盖自动化、电力和维护等机电领域,为此我们引入了 ESPRIT 方法。该方法强调工程师需要丰富技能组合,以适应不断变化的环境。这种教育模式将 AI 模块整合到机电工程课程中,符合 CDIO 标准,以培养广泛的 AI 能力。该课程经过精心设计,从基础知识进阶到高级应用和评估,采用主动学习策略提高学生的技术、解决问题和专业技能,最终鼓励全面掌握工程领域的 AI。本文介绍了 ESPRIT 方法,这是一种专为让机电工程师具备必要的 AI 能力而量身定制的教学范式。ESPRIT 机电工程课程中专用 AI 模块的整合符合 CDIO 标准,标志着工程教育取得了重大进步。我们的教学贡献有三方面,涵盖了三年内 AI 模块的设计、执行和评估。该课程采用主动学习策略(标准 8)让学生沉浸在 AI 问题解决中,营造出一种实践参与的环境。课程以结构化的方式展开(标准 3),从第三年的 AI 发现阶段开始,学生将熟悉 Python、AI 库和基础 AI 概念,包括基本分类和回归算法。第二阶段是第四年,重点是应用和强化所获得的知识,重点是 AI 项目的生命周期。学生通过开展一个遵循 AI 项目惯例的小型项目来结束这一阶段。第五年的最后阶段强调实际应用和掌握,最终在 NVIDIA DLI 研讨会上结束,学生有机会获得预测性维护 AI 证书。最后,本文对这种教学方法进行了批判性分析,强调了其实用应用和与学生能力相符的节奏良好的学习轨迹。尽管如此,它强调了在 AI 的理论和实践方面实现对称平衡的必要性,以充分利用其在机电工程中的潜力。关键词
1计算系,伦敦帝国学院,伦敦,英国,苏塞克斯大学2号信息学系,英国布莱顿大学,3苏塞克斯郡意识科学和苏塞克斯科学和苏塞克斯AI中心,苏塞克斯大学,苏塞克斯大学,布莱顿大学,布莱顿大学,4,4个,伦敦皇家科学,伦敦帝国科学,伦敦皇家科学界,是4个,英国,苏塞克斯大学。牛津,英国牛津,6临床神经科学系和麻醉司,剑桥大学,剑桥大学,英国,7勒沃尔姆情报未来中心7伦敦,伦敦,英国
1 Research Laboratory, Exercise Physiology and Physiopathology: from Integrated to Molecular “ Biology, Medicine and Health ” , LR19ES09, Faculty of Medicine of Sousse, Sousse University, Sousse, Tunisia, 2 Laboratory of Human and Arti fi cial Cognition (EA 4004), Psychology UFR, University of Vincennes/ Saint-Denis, Saint-Denis, France, 3 Research实验室,教育,运动,体育与健康(EM2S),LR15JS01,SFAX高地体育与体育研究所,SFAX大学,SFAX大学,SFAX,SFAX,突尼斯,突尼斯4培训与运动科学系,体育科学研究所,约翰内斯·古滕伯格 - 企业家Mainz,Mainz,Mainz,5 of Sfax, University of Sfax, Sfax, Tunisia, 6 High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia, 7 High Institute of Sport and Physical Education of Ksar Saïd, University of Manouba, Cité Nasr, Tunisia, 8 Department of Sport Sciences, College of Education, Taif University, Taif, Saudi Arabia, 9 Neurology Department, University Hospital Sahloul Sousse,Sousse,突尼斯,10学院医学与医学学院,阿拉伯海湾大学,麦纳马,巴林
摘要。在现代建筑中,重要方面之一是工程系统中的碰撞的管理,例如管道,管道,电线等。碰撞可能导致项目延迟,资源重新分配,甚至造成重大财务损失。众所周知,建筑实践中建筑信息建模(BIM)技术的实施可以显着促进对碰撞的检测和管理。但是,关于BIM对各种类型的建筑项目中碰撞问题解决效率的具体影响存在问题。在解决工程系统碰撞过程中实施BIM时,考虑潜在的困难和局限性也很重要。研究这些方面将有助于了解BIM对碰撞管理在施工中效率的影响的全部范围,并为该技术的实际应用提出建议。
3调查9 3.1问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.2实施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.2.1没有训练,最小化。。。。。。。。。。。。。。。。。。。。。。9 3.2.2更简单的模型 - 多项式求解器。。。。。。。。。。。。。。。。。。9 3.2.3复合模型 - x µ的方程求解器。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 3.2,4.4复杂模型 - P(x)的方程求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 3.3结果。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>153。1.3.1简单模型 - 多项式求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 3.3.3.2复合模型 - Xμ的方程求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17 3.3.3完整求解器 - P(x)的方程求解器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 3.4讨论。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 div>
摘要本文提出了一种混合修饰的冠状病毒群免疫Aquila优化算法(MCHIAO),该算法(MCHIAO)编译了增强的冠状病毒群免疫优化器(ECHIO)算法和Aquila Optimizer(AO)。作为具有竞争性人类的优化算法之一,冠状病毒群免疫优化器(CHIO)超过了其他一些以生物为灵感的算法。与其他优化算法相比,CHIO显示出良好的结果。然而,CHIO与局部Optima相关,并且大规模全球优化问题的准确性降低了。另一方面,尽管AO具有显着的本地剥削能力,但其全球勘探能力却没有必要。随后,提出了一种新型的元疗优化器,修饰的冠状病毒群kepira优化器(MCHIAO),以克服这些限制并将其适应以解决特征选择挑战。在本文中,提出了三个主要的增强功能,以克服这些问题并达到更高的最佳结果,这些结果是分类的情况,使用混乱系统增强了新基因的价值方程,并受到了冠状病毒的混乱行为的启发,并产生了一种新的公式,以开关开关和狭窄的利用。MCHIAO证明,除了AO和CHIO之外,还值得十种众所周知的最著名的最先进的优化算法(GoA,MFO,MPA,GWO,GWO,HHO,HHO,HHO,HHO,WOA,IAO,NOA,NOA,NOA,NGO)。Friedman平均水平和Wilcoxon统计分析(P值)均在所有最新算法测试23个基准功能上进行。Wilcoxon测试和Friedman在29 CEC2017功能上也进行了。此外,在10 CEC2019基准功能上进行了一些统计检验。六个现实世界中的问题用于验证所提出的MCHIAO针对相同的十二个最先进的算法。在经典函数上,包括24个单峰和44个多模式函数,分别评估了混合算法MCHIAO的剥削性和探索性行为。使用Wilcoxon Rank -sum检验计算的P值证明了所提出的所有功能的统计学意义,因为发现这些P值小于0.05。
心血管疾病(CVD)是全球死亡的主要原因,其中80%的死亡发生在低中收入国家(LMIC)。在加纳和整个非洲,CVD已成为主要是由于未被发现和治疗的高血压,但在这些资源贫乏的国家中分配给健康的资源的主要原因不到5%,包括不传染性疾病(NCD),包括CVD预防和管理。因此,非洲的大多数国家都没有通过改进的初级卫生保健(PHC)来预防,检测和管理CVD,以预防,检测和管理CVD以实现CVD护理中的普遍卫生覆盖范围(UHC),以实现CVD/NCD中的可持续发展目标(SDG)。鉴于此,加纳心脏倡议(GHI)被设想为使用卫生系统的确定差距以及减轻CVD国家负担的基于人群的方法的国家战略。 GHI干预包括制定准则和培训手册;培训,设备支持,建立国家呼叫/支持中心以及国家CVD和NCD的国家数据捕获系统的改进,高血压管理,深静脉血栓形成(DVT)和心力衰竭(HF)。 在实施GHI概念后,制定了国家CVD管理指南,以及包括一家教学医院在内的不同级别的护理机构的300个健康设施,也得到了基本的救生设备的支持。 这些是加强CVD护理和学习课程的卫生系统的关键贡献。鉴于此,加纳心脏倡议(GHI)被设想为使用卫生系统的确定差距以及减轻CVD国家负担的基于人群的方法的国家战略。GHI干预包括制定准则和培训手册;培训,设备支持,建立国家呼叫/支持中心以及国家CVD和NCD的国家数据捕获系统的改进,高血压管理,深静脉血栓形成(DVT)和心力衰竭(HF)。在实施GHI概念后,制定了国家CVD管理指南,以及包括一家教学医院在内的不同级别的护理机构的300个健康设施,也得到了基本的救生设备的支持。这些是加强CVD护理和学习课程的卫生系统的关键贡献。此外,超过1,500名医护人员还报告了其在其医疗机构中与CVD相关病例的管理和治疗方面的知识和技能的提高。