“抽象空间” 2023。Chiara Passa 的 AR 和人工智能艺术作品。“抽象空间”通过整面墙的投影,将一个虚构的极简环境(我使用 Chat GPT API 创建)与真实空间重叠,而这个空间一旦被观众使用 AR-AI 应用程序修改,就会神秘、怪异或有时不完整地重新出现在我们周围。观众在这个新的不稳定空间中,通过观看由几何体积阴影构成的新 AI 空间,体验到一种缺失或空虚的感觉,这些阴影是根据缓冲过程沿光源方向挤压图元轮廓而创建的。还提供视频手册(屏幕 7')版本。视频预览:https://youtu.be/zzAaf7hxTYI Android 应用程序和相关矩阵可供下载。每个动画持续 6'.30''。 https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace2&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace3&hl=en https://play.google.com/store/apps/details?id=com.ChiaraPassa.AbstractSpace4&hl=en
AMA 向采用人工智能 (AI) 特别委员会提交的报告 采用人工智能 (AI) 特别委员会 PO Box 6100 国会大厦 堪培拉 ACT 2600 AMA 是代表澳大利亚医疗专业人士的最高机构。医生是澳大利亚人工智能 (AI) 应用的先锋。本报告将重点介绍澳大利亚在医疗保健领域安全有效地采用人工智能所必须采取的基本步骤。虽然有时被夸大了,但人工智能确实有可能大大提高医疗保健服务的效率和质量。同时,如果不谨慎、监督和深思熟虑地指导公众需求,它也会给患者和医疗行业带来新的风险。本报告将涉及委员会考虑的职权范围,并采用以下关键原则来支撑 AMA 的立场:
摘要:心脏呼吸虽然通常是良性的,但有时可能表明需要立即干预的严重潜在条件。因此,准确而迅速的诊断仍然是临床优先级。“基于剪辑的心pal诊断专家系统”代表了一种应对这一挑战的新方法,利用了人工智能和基于规则的专家系统的力量。具体来说,该系统应用了7个If-then规则的套件来评估潜在的心pal症原因并分配了三个结果之一:1)确认的心pal症状诊断,2)可疑与心血管疾病的可疑联系,以及3)可能与焦虑症或压力障碍的可能联系。专家系统提供了直观的用户界面,可根据用户提供的信息进行无缝症状输入和即时诊断。本文探讨了该专家系统生命周期的各个阶段,包括设计,实施和评估。此外,该研究还将该系统定位在更广泛的论述中,以基于规则的专家系统进行心pal诊断,严格分析其效率,潜在的陷阱和持续的挑战。通过这项研究,突出了将基于规则的专家系统整合在临床诊断过程中的价值,这说明了其提高诊断准确性和患者结果的能力。
核技术的演变:热核武器 热核武器,有时也称为氢弹或“氢弹”,利用原子裂变和核聚变制造爆炸。这两个过程的结合会释放出巨大的能量,比原子弹强大数百到数千倍。 起源 氢弹的研发可以追溯到 20 世纪 40 年代的曼哈顿计划。研究核裂变的物理学家爱德华·泰勒对使用氢作为燃料扩大核爆炸产生了兴趣。他和其他人将这项尚未被发现的发明称为“超级”,因为它具有前所未有的破坏力。关于超级核弹的可能性甚至道德性的争论导致许多人将注意力转向小型裂变装置。直到 1949 年 8 月,苏联试验了自己的原子弹。仅仅六个月后,新当选的总统哈里·S·杜鲁门下令研发氢弹。曼哈顿计划的数学家斯坦尼斯拉夫·乌拉姆与泰勒合作设计了第一颗氢弹。对两人来说,最大的理论障碍是在裂变爆炸的冲击波到达他们的辅助装置之前弄清楚如何触发核聚变。他们的突破发生在研究的一年多一点的时间里,1951 年泰勒-乌拉姆设计获得批准进行测试。这枚炸弹(代号为“常春藤麦克”)于 1952 年 11 月 1 日在太平洋马歇尔群岛的埃尼威托克环礁引爆。爆炸产生的能量相当于 1040 万吨 TNT,大约是美国 1945 年在广岛投下的原子弹的 700 倍。 工作原理 这种武器的具体设计仍然是国家机密,但大多数专家认为炸弹分为两个阶段:第一阶段,裂变,触发第二阶段,聚变。其结果是,爆炸威力极大,而且理论上是无限的。
未分类// 常规 R 101338Z 5 月 19 日 FM CNO 华盛顿特区至 NAVADMIN INFO CNO 华盛顿特区 BT 未分类 NAVADMIN 108/19 传递给办公室代码:FM CNO 华盛顿特区//N1// INFO CNO 华盛顿特区//N1// MSGID/GENADMIN/CNO 华盛顿特区/N1/MAY// SUBJ/通用训练预防措施,以降低运动相关虚脱和死亡风险// REF/A/DOC/OPNAV/11JUL11// NARR/REF A IS OPNAVINST 6110.1J,身体准备计划。// RMKS/1。本 NAVADMIN 提醒所有人员注意通用训练预防措施 (UTP) 以降低运动相关虚脱和死亡风险的重要性,并指示修改参考 (a),即进行海军体能准备测试 (PRT) 的程序。不幸的是,在过去的一年里,有四名水兵在看似正常的体能训练中去世。一次损失太多,让每名水兵了解运动相关死亡的风险因素和将这些风险降至最低的策略至关重要。指挥官和主要领导人员,包括指挥体能领袖 (CFL),必须培养一种推广这些 UTP 的训练文化,识别早期痛苦迹象,并在出现明显痛苦迹象时立即终止劳累活动。2. 与运动相关的虚脱和死亡相关的风险因素可能是个人、环境或外部的。个人风险因素包括缺乏适当的环境或运动适应、脱水、近期或当前患病、累积疲劳、基线体质不佳、易患或潜在的心脏病、运动诱发的哮喘、镰状细胞性状 (SCT)、体内脂肪过多 (BMI > 30) 和之前 PRT 表现不佳。过度动机同样是一种重要的风险因素,因为个人可能会努力工作,而忽略身体不适的体征和症状的出现。环境或外部风险因素包括:高海拔运动、高环境温度和湿度以及含有兴奋剂的膳食补充剂,包括产热和能量饮料。3. 在训练过程中识别紧急情况并及时准确地做出反应至关重要。一些综合症可能导致迅速昏倒,而其他综合症则可能慢慢发展为最初的意识昏倒。了解可能导致运动相关昏倒的综合症有助于指导治疗。a. 心脏骤停 (SCA)。心血管性猝死导致的 SCA 通常很突然,会立即失去意识,有时还会出现短暂的癫痫样动作。在确认患者反应迟钝和脉搏消失后,必须开始高质量的心肺复苏术 (CPR)、部署自动电子除颤器 (AED) 并启动紧急医疗服务 (EMS)。b. 与 SCT 相关的劳力性猝死 (ECAST)。ECAST 患者可能是领跑者,也可能是开局强劲,但在崩溃之前,人们会注意到他们行动迟缓、落后和挣扎。他们开始失去平稳的协调性,跑步姿势和步态变得笨拙,双腿看起来僵硬或颤抖。受害者可能会抱怨逐渐虚弱、疼痛、痉挛或呼吸急促。
人工智能如何改变我们做出购买决策的方式?这对商标法意味着什么?商标法的核心在于如何购买商品和服务,而由于人工智能正在影响购买过程,因此从定义上讲它也影响着商标法。人工智能通过两种方式影响购买过程:(a)消费者可获得的品牌信息和(b)谁来做出购买决策。亚马逊的 Alexa 等人工智能个人零售助理有可能成为品牌向消费者提供的“守门人”,控制向消费者提供哪些品牌信息,并以纯粹的形式购买品牌产品,在人工智能所谓的“自动执行模型”中几乎不需要或根本不需要人为干预,从而有效地将传统的购物体验从“先购物后发货”模式颠覆为“先发货后购物”模式。商标法的许多关键方面都涉及人性的弱点。如果您考虑商标法和实践中的一些“流行词”,例如“混淆”、“不完全记忆”、“联想”和“商标混淆”,这些概念都围绕着人类的弱点。然而,人工智能有可能从购买过程中消除“人性”和“弱点”。人工智能应用程序可以通过“给我买个灯泡”等一般命令来购买产品。人类消费者与人工智能应用程序购买的灯泡品牌没有任何互动。人工智能应用程序会混淆吗?它会混淆商标吗?人工智能应用程序甚至会通过传统的听觉、语音和概念比较商标的方式来评估产品购买,这就是所谓的人工智能黑箱问题吗?人工智能应用程序经常受到个人消费者过去购买决策的影响,而人工智能应用程序做出购买决定或建议的原因有时可能难以理解。在这些情况下,知识产权侵权责任问题也引起了重要的问题。然而,即使人工智能应用程序不做出购买决策,它仍然会影响消费者在做出购买决策时可用的品牌信息。例如,亚马逊 Alexa 平均只向消费者推荐三种产品。它控制着向消费者推荐什么品牌产品,它而不是人类消费者掌握着所有的品牌信息。然而,人工智能对购买过程的影响必须放在历史背景中来看待。人工智能的兴起是新的,但并非史无前例。现代商标法诞生于十九世纪,并发展到现代。然而,在此期间,购买过程并非一成不变,而是发生了变化。我们只需看看从传统的十九世纪“店主”购买产品模式到二十世纪二十年代超市发明的变化,从互联网和社交媒体的兴起到人工智能的兴起。商标法已经适应并发生了变化,实际上可以说是适应性最强的知识产权法形式。例如,关于人工智能应用程序的责任问题,我们已经可以从关键词广告的案例中得到指导,例如谷歌法国,它是随着互联网购物的兴起而发展起来的。如果购买过程中的“参与者”如人工智能应用程序在购买决策/过程中扮演更被动的角色,则人工智能应用程序提供商不太可能被追究责任,如果人工智能应用程序在购买决策中扮演更积极的角色,并且可以说人工智能提供商在购买决策中强烈影响消费者,则更有可能发现责任。商标法已经适应了购买过程的变化,并且它将再次适应。HGF 合伙人兼特许商标律师 Lee Curtis
人工智能可以重新编程新闻编辑室吗?自动化新闻中的信任、透明度和道德 计算机程序可以编写引人入胜的新闻故事吗?在路透社最近的一份技术趋势和预测报告中,接受调查的 200 名数字领导者、编辑和首席执行官中,78% 表示投资人工智能 (AI) 技术将有助于确保新闻业的未来 (Newman, 2018)。然而,探索这些新的报道方法,为那些已经在努力理解人类记者和计算工作之间复杂动态的人带来了一系列无法预见的道德问题。在新闻编辑室实施自动化叙事向记者提出了如何保持和鼓励报道的准确性和公正性以及对他们所服务的受众的透明度的问题。新闻编辑室中的人工智能已经从一个想法发展成为现实。1998 年,计算机科学家 Sung-Min Lee 预测人工智能将在新闻编辑室得到应用,届时“机器人代理”将与人类记者一起工作,有时甚至代替人类记者 (Latar, 2015)。2010 年,Narrative Science 成为第一家使用人工智能将数据转化为叙事文本的商业企业。Automated Insights 和其他公司紧随 Narrative Science 之后,通过自动化讲故事的方式将 Lee 的“机器人代理”带入新闻编辑室。虽然当今的新闻编辑室正在使用人工智能来简化各种流程,从跟踪突发新闻、收集和解释数据、核实在线内容,甚至创建聊天机器人来向用户推荐个性化内容,但自动生成文本和视频故事的能力促使整个行业转向自动化新闻,或“使用软件或算法自动生成新闻故事而无需人工干预的过程”(Graefe, 2016)。《福布斯》、《纽约时报》、《华盛顿邮报》、《ProPublica》和彭博社只是当今在新闻报道中使用人工智能的部分新闻编辑室。《华盛顿邮报》的“内部自动化叙事技术”Heliograf 只是新闻编辑室利用人工智能扩大其在体育和金融等严重依赖结构化数据的领域的报道的众多例子之一,“让记者专注于深入报道”(Gillespie,2017 年)。人工智能有可能让新闻编辑室和报摊的记者都变得更好。通过自动化,现在可以进行大量的新闻报道新闻智库 Polis 在其 2019 年新闻 AI 报告中透露,新闻编辑室使用人工智能的主要动机是“帮助公众应对新闻过载和错误信息的世界,并以便捷的方式将他们与与他们的生活相关、有用和有益的可靠内容联系起来”(Beckett,2019 年)。
