●4801计算机科学I●4838机械制图和设计II●5236计算机科学II●5249计算机科学III:软件开发帽岩石●5250计算机科学III:数据库●5251计算机科学III:信息学III:信息学:信息学●5253 Computer Science III:Cybersecurity II:Cybersecurity II:Cybersecurity II●56 ARTACTECTART●5652 ARTACTECTER●5652 ARTACTECTERCTINTER●5652 ARTACTECTERT●5652 ARTACTECTERCTINTER●5652 ARTACTECTITIC电子和计算机技术II●7197 BIM体系结构●7200电力和电动机的基础●7202制造原理和设计●7223机械设计Capstone●7351计算机科学中的主题●7352 7361计算机科学●7361电子基础●7362电子基础●7362电子技术●7362电子capstone
在离线模仿学习(IL)中,代理商旨在学习最佳的专家行为政策,而无需其他在线环境互动。但是,在许多现实情况下,例如机器人操纵,脱机数据集是从次优行为中收集的,没有奖励。由于稀缺的专家数据,这些代理通常会简单地记住较差的轨迹,并且容易受到环境变化的影响,因此缺乏对新环境推广的能力。要自动生成高质量的专家数据并提高代理的概括能力,我们提出了一个名为ffline i的框架,即通过进行反事实推断,并使用c oferfactual数据a u摄量(oilca)。尤其是我们利用可识别的变异自动编码器来生成反事实样本以进行专家数据增强。我们理论上分析了生成的专家数据的影响和概括的改进。此外,我们进行了广泛的实验,以证明我们的方法在两个d eep m ind c introl s uite基准测试基准上的分布性能和c ausal w orld w orld w orld w orld w orld w orld w orld基准的表现显着超过了各种基准。
周期研究表明,提高发动机压力比和周期温度的好处是减轻发动机的重量并提高商用涡轮发动机的性能。NASA正在与行业合作,定义高级发动机和发动机技术的技术要求,以实现NASA先进的亚音速技术计划的目标。随着发动机操作条件变得更加严重,客户要求较低的运营成本,NASA和发动机制造商正在研究提高发动机效率和降低运营成本的方法。正在研究许多新技术,这些技术将使下一代发动机能够在更高的压力和温度下运行。提高密封性能 - 在需求条件下运行的同时降低泄漏和增加使用寿命 - 将在满足减少特定燃料组成并最终降低直接运营成本的整体计划目标中发挥重要作用。本文概述了先进的亚音速技术计划目标,讨论了高级密封开发的动机,并突出了密封技术要求满足未来发动机性能目标。
摘要。在自然环境中具有综合性运作的情境意识到的人工药物面临着几个挑战:空间意识,对象效果检测,动态变化和不可预测性。一个关键的挑战是代理商识别和监视与其目标有关的环境要素的能力。我们的研究介绍了一种用于反应性机器人技术的神经符号模块化体系结构。我们的系统结合了在环境和图像处理技术(如光流)上执行对象识别的神经组件,以及符号表示和推理。通过将图像示意性知识整合在本体论结构中,推理系统基于体现认知范式的基础。该本体可用于创建有关感知系统的查询,决定符合的问题,并推断从感知数据中得出的实体功能。推理和图像处理的组合允许代理对正常操作的看法,并发现针对特定相互作用中涉及的对象的一部分的新概念。发现的概念允许机器人自主获取培训数据并只是其符号的感知来识别零件,并通过将搜索重点放在这些相关对象的零件上,从而为更复杂的任务进行计划。我们在模拟世界中演示了我们的方法,在模拟世界中,代理商学会了识别涉及支持关系的对象的一部分。虽然代理商最初没有概念,但通过观察从钩子上悬挂的支持对象的示例,但它学会了认识到建立支持所涉及的部分并能够计划支持关系的建立/破坏。这可以通过系统的方式通过观察来扩展其知识的能力,并说明了将深层推理与动态设置中的反应性机器人技术相结合的潜力。
视觉语言(VL)模型已获得了显着的重点,从而在多模式推理方面取得了显着进步。这些体系结构通常包括视觉编码器,大型语言模型(LLM)和一个将视觉特征与LLM的代表空间保持一致的投影模块。尽管他们成功了,但仍然存在一个关键的限制:愿景编码过程仍然与用户查询相关,通常是以与图像相关的问题的形式。因此,所得的视觉特征可能无法最佳地调整图像的特定元素。为了解决这个问题,我们介绍了QA-Vit,这是一种问题的多模式原因,这是一种问题,将问题意识直接嵌入到视觉编码器中。此集成导致动态视觉特征,重点是提出问题的相关图像方面。QA-VIT是模型 - 静态的,并且可以有效地将其置于任何VL体系结构中。广泛的经验证明了将我们的方法应用于各种多模式体系结构的有效性,从而导致跨不同任务的一致改进,并展示了其以增强视觉和场景文本理解的能力。
DNA序列包含大量的生物学数据,计算机算法在处理这些数据进行人体检查中起着重要作用。在这里,我们描述了一个更新的计算机生成的听觉显示工具,该工具被用作独立音频或与视觉显示的补充DNA序列检查。听觉显示使用音符来表示与基因表达或DNA复制过程有关的数据。鉴于在听觉显示中使用音符会增加这些可能被视为算法音乐的可能性。进一步追求这个概念,在科学实验室之外的音乐工作室环境中使用了听觉显示。音乐家受到挑战,要与音频播放同步,并点缀听觉显示的旋律和谐波内容。记录了带有听觉显示的新音乐作品,并在外展事件中进行了现场记录和进行,以促进对基因表达和DNA复制过程的更广泛理解,以及基因序列信息如何影响人类健康状况。
减轻奖励黑客攻击 - 由于其学习目标中的缺陷或错误的特征,AI系统的表现不佳 - 在构建有能力且一致的模型方面面临着一个关键的挑战。我们表明,我们可以通过使用另一个观察模型的经验链(COT)推理的LLM来监视诸如OpenAI O3-Mini之类的前沿推理模型,例如OpenAI O3-Mini。COT监视可以比单独监视剂的动作和输出更有效,我们进一步发现,比O3-Mini(即GPT-4O)弱的LLM可以有效地监视更强大的模型。因为COT监视器可以有效地检测漏洞,因此自然要问是否可以通过将COT监视器直接纳入代理商的训练目标来抑制这些漏洞。我们表明,将COT监测器集成到强化学习奖励中确实可以在低优化制度中产生更有能力,更一致的代理,但我们发现,通过过多优化,代理商学习了混淆的奖励黑客攻击,将其隐藏在COT中,同时仍然表现出很大的奖励奖励率。由于很难分辨出COTS何时变得混淆,因此可能有必要通过不直接将强大的优化压力直接施加到经营链上来缴纳可监视性税,从而确保COTS保持可监视且可用于检测未对准的行为。
摘要 - 通过人工智能(AI)基于人工智能(AI)基于人工智能的沟通优化仍然是基础的基础。作为第六代(6G)通信网络追求全赛纳里奥的覆盖范围,在复杂的极端环境中的选择提出了未经证实的挑战。这些环境的动态性质,结合物理约束,使AI解决方案(例如深度强化学习(DRL))很难为培训过程获得有效的奖励反馈。但是,许多现有的基于DRL的网络优化研究通过理想化的环境设置忽略了这一挑战。受到生成AI(Genai)(尤其是扩散模型)的强大功能的启发,在捕获复杂的潜在分布时,我们引入了一种新颖的基于扩散推理的奖励成型方案(着装),以实现强大的网络优化。通过对观察到的环境状态进行调节和执行动作,着装利用扩散模型的多步降级过程作为深层推理的一种形式,逐渐完善了潜在表示,以产生有意义的辅助奖励信号,以捕获网络系统模式。此外,连衣裙设计用于与任何DRL框架的无缝集成,允许连衣裙辅助的DRL(装扮得出)即使在极端的网络环境下也可以实现稳定而有效的DRL培训。实验结果表明,穿着的DRL大约达到1。礼服代码可从https://github.com/nice-hku/dress获得。与基线方法相比,在稀疏奖励无线环境中的收敛速度比其原始版本快于其原始版本,并且在多个一般DRL基准环境中的性能得到了显着改进。