我们研究了与动态自旋 1 2 链耦合的 1D Z 2 格子规范理论的量子多体疤痕中的介子激发(粒子-反粒子束缚态),该链作为物质场。通过引入物理希尔伯特空间的弦表示,我们将疤痕态 j Ψ n;li 表示为所有具有相同弦数 n 和总长度 l 的弦基的叠加。对于小 l 疤痕态 j Ψ n;li,物质场的规范不变自旋交换关联函数随着距离的增加呈指数衰减,表明存在稳定的介子。然而,对于大的 l ,关联函数呈现幂律衰减,表示非介子激发的出现。此外,我们表明这种介子-非介子交叉可以通过淬灭动力学检测到,分别从两个低纠缠初始态开始,这在量子模拟器中是实验可行的。我们的研究结果扩展了格点规范理论中量子多体疤痕的物理学,并揭示了非介子态也可以表现出遍历性破坏。
伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>伊朗萨布兹瓦里大学机械工程系,伊朗bzevar,伊朗B机械工程系,安东国立大学机械工程系汤姆斯克州立大学,634050,俄罗斯汤姆斯克,俄罗斯E电气与信息工程学院,天津大学,天津,田津,300072,中国,埃克塞特大学环境,科学与经济学院,埃克塞特大学,埃克塞特大学,EX4 4QF,EX4 4QF,UK G工程学,肯特大学,肯特大学,肯特大学,CT2 7nz,UK HERDING,UK HERDING,UK HENDING ERIGISS of ERDICT of DRIGND>
摘要:超声波无线能量传输技术(UWPT)是植入式医疗设备(IMD)供电的关键技术。近年来,氮化铝(AlN)由于其生物相容性和与互补金属氧化物半导体(CMOS)技术的兼容性而备受关注。同时,钪掺杂氮化铝(Al 90.4%Sc 9.6%N)的集成是解决AlN材料在接收和传输能力方面的灵敏度限制的有效解决方案。本研究重点开发基于AlScN压电微机电换能器(PMUT)的微型化UWPT接收器装置。所提出的接收器具有2.8×2.8 mm 2的PMUT阵列,由13×13个方形元件组成。采用声学匹配凝胶,解决液体环境下声阻抗不匹配问题。在去离子水中的实验评估表明,电能传输效率(PTE)高达2.33%。后端信号处理电路包括倍压整流、储能、稳压转换部分,可有效将产生的交流信号转换为稳定的3.3V直流电压输出,成功点亮商用LED。这项研究扩展了无线充电应用的范围,为未来实现将所有系统组件集成到单个芯片中,进一步实现设备小型化铺平了道路。
近年来,LIDAR(光检测和范围)技术与自动驾驶电动汽车(AEV)的整合引起了极大的关注,这标志着朝着实现更安全,更有效的运输系统的关键步骤。LIDAR传感器具有提供精确和实时三维环境感知的无与伦比的能力,具有增强AEV的自主性和可靠性的巨大承诺。然而,在该领域迅速发展的研究中,确保居住者和行人的安全仍然是一个关键的关注,需要一丝不苟的关注。现有文献广泛地讨论了与AEVS中的LiDAR集成相关的技术方面和性能指标,但在解决有效缓解潜在风险所需的细微差别安全含义和主动措施方面存在显着差距。本文旨在通过提出一个综合框架来弥合这一差距,该框架优先考虑LIDAR技术将其整合到AEV中。
在复合材料(例如纤维金属层压板(FML))中检测并表征隐藏的损害仍然是一个挑战。引导的超声波(GUW)或X射线影响通常用于检测这些损害,但它们的解释仍然存在,在非破坏性测试(NDT)和结构健康监测(SHM)中也是如此。数据驱动的预测指标模型可以检测与GUW时间相关信号的结构中的损害,但是实验训练数据缺乏差异,统计强度和超参数空间的质量覆盖率。通常会经历心理数据缺乏目标参数的基础真理注释。综合数据通常是创建强大而广义的损害预测模型的唯一解决方案。可以使用基于模型,模型辅助或无模型方法生成合成传感器数据。然而,通过应用有限元方法或求解字段方程式通过数值计算的GUW信号表明,由于过多的约束和简化,尤其是在非同质的材料,复合材料和层板的情况下,由于过多的约束和简化而显示出差的现实统计。数据驱动的生成模型的最新发展,例如生成对抗(神经)网络(GAN)[1],通常是由大量生成过程驱动的,包括确定性样式矢量以生成特定信号数据[2] [2],确定损坏大小,位置,位置,定位,传递器位置,材料,材料,材料,材料,材料,材料,材料。这些新体系结构旨在通过使用
线性玻色子模式为量子信息处理提供了一种硬件高效的替代方案,但需要访问一些非线性才能实现通用控制。光子学中非线性的缺乏导致了基于编码测量的量子计算,它依赖于线性操作,但需要访问资源丰富的(“非线性”)量子态,例如立方相态。相比之下,超导微波电路提供可工程化的非线性,但受到静态克尔非线性的影响。在这里,我们展示了由超导非线性不对称电感元件 (SNAIL) 谐振器组成的玻色子模式的通用控制,这由 SNAIL 元件中的原生非线性实现。我们通过在克尔自由点附近操作 SNAIL 来抑制静态非线性,并通过快速通量脉冲动态激活高达三阶的非线性。我们通过实验实现了一组通用的广义压缩操作以及立方相门,并利用它们在 60 纳秒内确定性地准备立方相态。我们的研究结果开创了多项式量子计算的实验领域,该领域最初由 Lloyd 和 Braunstein 引入了连续变量概念。
摘要 本环境评估 (EA) 已准备好满足 NEPA 的 14 CFR § 91.817-818 要求(超音速运行授权)。该文件符合联邦航空管理局 (FAA) 命令 1050.1F 环境影响:政策和程序及其随附的参考资料以及美国运输部命令 5610.1C 环境影响考虑程序。本 EA 解决了在现有超音速走廊内拟议的超音速运营对环境的潜在影响,以及在莫哈韦航空航天港进行的相关着陆和起飞 (LTO) 运营的潜在影响。本 EA 中评估的拟议超音速飞行操作将包括一年内进行的有限次数的试飞(XB-1 及其追逐飞机的 10-20 次超音速测试)。拟议行动不会导致该地区已经发生的超音速飞行操作数量发生永久性变化。目的和需求 该项目的目的是进行 XB-1 实验飞机的陆上超音速飞行测试,以降低未来开发超音速客机 Overture 的风险。进行测试的必要性在于确保新技术飞机的安全开发。XB-1 演示飞机将测试设计特性和操作、开发技术并验证有助于降低与最终飞机设计相关的后期风险的工具。此次测试将使该公司的全尺寸超音速客机 Overture 能够开发出安全、适航的设计。超音速测试 XB-1 的重点是提供信息并确保安全。XB-1 将用作飞行数据收集器;飞机上集成了一个大型数据采集系统。所有数据都将由飞行测试工程师审查,并用于改进和验证工程计算和程序流程。拟议行动 作为一架实验飞机,XB-1 将完成其往返于加利福尼亚州莫哈韦的莫哈韦航空航天港的整个测试计划。拟议的超音速运行将在黑山超音速走廊和高空超音速走廊的部分地区进行。XB-1 是一架三引擎 (GE J85 -15) 飞机。XB-1 飞行测试计划将包括实验飞机的亚音速和超音速飞行。在所有飞行测试操作中,包括超音速飞行,一架追逐飞机将陪同 XB-1。Boom 计划仅在 30,000 英尺平均海平面 (MSL) 以上以超音速飞行所有飞机进行这些飞行测试。根据低速飞行测试数据决定的飞行测试空速增量,测试计划的超音速部分预计将包括大约 10 - 20 次超音速测试,每次超音速测试最多包括 2 次
纳米材料和生物结构的消化杂志卷。19,编号1,1月至2024年3月,第1页。 319-324超热路线D. Ochoa合成的碳量子点的光致发光特性的影响,J。GuzmánTorres,E。M。M. Cervantes,J。L。Cavazos,I。Gómez,I。Gómez * Nuevo Leon,Nuevo Leon,Nuevo Leon,Nuevo Leon,Chement of Chemical Sciencess clabience overation overation overation overation overals overals overals ov。大学,C.P。 66455 San Nicolas de Los Garza,N.L。 墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。 在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U. 至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。大学,C.P。66455 San Nicolas de Los Garza,N.L。 墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。 在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U. 至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。66455 San Nicolas de Los Garza,N.L。墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U.至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。至448 A.U.进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。(收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。Introduction Materials derived from carbon are interesting materials and are currently receiving special attention due to the applications that can be accessed, one of the materials derived from these, are carbon quantum dots (CQD) [1], they are materials that have average sizes of 10 nm[2], due to this they have exceptional structural and electronic properties such as water solubility, photoluminescence, low toxicity, biocompatibility [2], [3], [4],[5],[6]。CQD的光学特性非常有利,这有助于通过光致发光[11],[12],[13]来检测污染物,病毒等的传感器使用,因此本研究的重点是该特征,这项功能主要由合成方法提供,主要是我们对综合方法进行了综合效果,并构成了整体的友好,并且是对环境的良好友好的友好,并且是在综合友好的范围内,并且是对环境的友好效果,并且是对环境的特征,并且是综述的。水热过程是获得量子点最常用的途径之一,因为这是一种使用低温的方法,相对较短,并且获得了颗粒的良好光致发光发射[1],[3],[14],[15]。为了改善该财产,已经有报道证明,通过使用超声处理,可以获得更好的PL排放。这是由于Sonotrode与材料在水性培养基中的接触,其作用是将大颗粒碎裂至小,因此由于机械振动而引起的更多分散颗粒,这将导致颗粒接近电磁频谱中的蓝色发射[7] [16],[17],[17],[16],[17]。在CQD合成后的这项工作中,我们研究了1、2和3小时内使用Sonotrode对CQD颗粒的效果,从而评估了它们通过光致发光光谱仪(PL),傅立叶转换基础光谱光谱(FTIR)和传输的粒径和光致发光发射(flassional sirtron Microspopicy和Electron Electron(flassital)。
第 26 届 AIAA 国际太空飞机和高超音速系统和技术会议将于 2025 年与 AIAA 科学技术 (SciTech) 论坛和博览会同期举行,将为来自世界各地的与会者提供一个讨论和交流信息的论坛,讨论与太空飞机和高超音速大气飞行器相关的前沿研究和开发活动以及这些能力的基础技术。会议将介绍来自北美、南美、澳大利亚、欧洲和亚洲的国家计划,并讨论多种国际合作机会。技术论文主题包括计划中和正在进行的航天飞机和高超音速飞行器计划、先进运载火箭和高超音速大气飞行器概念、商业太空旅游概念、地面和飞行测试技术、结果和经验教训、再入飞行器系统和技术、航天飞机和高超音速飞行器的空气动力学和气动热力学、制导和控制系统、火箭、冲压发动机、超音速冲压发动机和其他先进推进系统,包括组件技术(例如进气口、燃烧系统、燃油喷射概念、点火和火焰稳定概念、喷嘴)、高温材料、热结构和热保护系统、健康监测和管理技术等。将围绕全球关注的相关主题组织特别小组会议。
2020 年,北约科学技术组织应用飞行器技术 (AVT) 专家组 008 (ST008) 将高超音速飞行器定义为“在非弹道弹道的大部分时间里在大气层内飞行,速度至少达到音速的五倍”。5 在这里,高超音速飞行器被细分为众所周知的高超音速滑翔飞行器 (HGV) 和高超音速巡航导弹 (HCM)。此外,第三组混合威胁也称为航空弹道导弹,被定义为介于弹道导弹和 HGV 之间的武器,兼具两者的特征。无论是从物理角度还是能力角度描述高超音速威胁,从军事角度来看,一般只有三个方面很重要:• 效应器的生存能力如何?• 效果能多快产生?• 可以产生哪种效果?