量子计算机经常操纵在两个级量子系统上编码的物理Qubit。Bosonic Qubit代码通过将信息纳入无限二维的Fock空间的标子空间中,而脱离了这个想法。这个较大的物理空间提供了自然保护,以防止实验瑕疵,并允许玻体代码规避适用于受二维希尔伯特空间约束的状态的禁忌结果。通常以单个骨率模式定义了一个骨量子量子,但是寻找可以表现出更好性能的多模式版本是有意义的。在这项工作中,基于这样的观察,即猫代码生活在由有限数量的有限亚组索引的连贯状态的跨度中,我们考虑了居住在四个相干态的24个相干状态的两种模式概括,由二进制四面体组2 t索引。结果2 t-qutrit自然遗传了第2 t组的代数特性,并且在低损失方案中似乎非常健壮。我们启动其研究,并确定稳定器以及该玻感代码的一些逻辑操作员。
氢可以在螺旋桨和喷气飞机中代替传统的碳氢化合物燃料。在螺旋桨推进的情况下,燃烧发动机的使用优于燃料电池和电动机。在燃料电池的螺旋桨上从化学能量到机械能的转化效率较大,但是除了较重之外,推进系统也更大。燃料电池对新型城市空气流动解决方案有更好的吸引力。燃气轮机发动机的杂交对螺旋桨和喷气推进是有益的。对氢飞机的建筑进行了强烈的修改,以接受更大的燃油箱,具有更大的质量能量,但比喷气燃料较大,但具有较小的体积特异性能源,该燃料储存的燃油箱在板上液体或冷晶中储存。共形储罐可以减少飞机的总体积与球形/圆柱罐,与使用新型复合结构来改善强度并减少储罐的重量相同。随着常规设计,最大捕获的重量略有减小,但是与碳氢化合物燃料相比,每次PAX和NM的能量消耗量大于8% - 15%。燃料电池螺旋桨推进器也遭受了电池和燃料电池堆的重量。非规定设计,例如混合翼和杂交可能有助于减少能源消耗。可再生式氢气 - 仅有的飞机需要在2035年全面部署之前进一步开发飞机技术,当时提供可再生氢的价格将是便宜且丰富的,并且机场基础设施也会开发出来。鉴于高超音速技术的进展以及与亚音速商业航空的协同作用,也可以引入高超音速可再生能源唯一的飞机。
过去几年,美国国防部 (DoD) 采取了雄心勃勃的举措,开发和部署高超音速技术,以支持各种国家安全任务。高超音速武器机动性强,在地球大气层内飞行速度至少为音速的五倍,即 5 马赫,可在短时间内造成远程致命影响。尽管最近做出了这些努力,但国防部在大规模部署高超音速系统方面的承诺往往摇摆不定。有些年份,这是一个明确的优先事项,而其他时候,这一承诺却模棱两可。因此,当前的供应链,包括制造基地、关键材料供应、测试基础设施和劳动力,都无法支持国防部的雄心勃勃的计划。这并不是说不可能,而是必须采取重大措施来加强高超音速供应链。为了纠正关键的高超音速供应链漏洞,政府、工业界和学术界之间采取全面协调的方法至关重要。这种整合将促进高超音速系统以经济高效和可靠的方式生产。如果现在采取行动,国防部的高超音速愿望将触手可及。以下列出了有关高超音速供应链漏洞的最重要发现以及解决这些漏洞的建议。
量子代码通常依靠大量的自由度来达到低错误率。但是,每个额外的自由度都会引入一套新的错误机制。因此,最大程度地减少了量子代码使用的自由度是有帮助的。一种量子误差校正解决方案是将量子信息编码为一个或多个骨气模式。我们重新审视旋转不变的骨气代码,这些代码在fock状态下由整数g隔开,而间隙g则赋予了这些代码的数字弹性。直觉上,由于相位运算符和数字换档运算符不会通勤,因此人们期望在弹性到数换速器和旋转错误之间进行权衡。在这里,我们获得了与高斯dephasing误差相对于GPAP的单模单模式代码的近似量子误差的不存在的结果。我们表明,通过使用任意多种模式,G型多模式代码可以为任何有限的高斯dephasing和振幅阻尼误差产生良好的近似量子误差校正代码。
中国航空研究院制作 如需更多副本,请直接咨询中国航空研究院院长,空军大学,55 Lemay Plaza,蒙哥马利,AL 36112 所有照片均根据知识共享署名-相同方式共享 4.0 国际许可证或版权法第 107 条的合理使用原则获得非营利性教育和非商业用途许可。 其他所有图形均由中国航空研究院制作 封面艺术由 BluePath Labs 制作 电子邮件:Director@CASI-Research.ORG 网址:http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 免责声明 本学术研究论文中表达的观点为作者的观点,并不一定反映美国政府或国防部的官方政策或立场。根据空军指令 51-303《知识产权、专利、专利相关事项、商标和版权》的规定,本作品属于美国政府所有。有限的印刷和电子发行权 复制和印刷受 1976 年《版权法》和美国适用条约的约束。本文及其所含商标受法律保护。 本出版物仅供非商业用途使用。未经授权,禁止在线发布本出版物。允许将本文档复制用于个人、学术或政府用途,前提是文档未经修改且完整,但复制时必须注明作者和中国航空航天研究所 (CASI)。复制或以其他形式重复使用其任何研究文件用于商业用途,必须获得中国航空航天研究所的许可。有关重印和链接权限的信息,请联系中国航空航天研究所。 允许公开发布,无限分发。
该装置安装在 AF1300 风洞的控制和仪表框架上。该装置包含 32 个经过校准的压力传感器。每个传感器的输入连接均通过安装在装置前面板上的快速释放压力输入进行。这样可以轻松快速地连接装置和安装在风洞中的实验。所有压力均相对于大气压进行测量。该装置具有一个带滚动开关的一体式液晶显示屏,可随时以四个为一组查看所有 32 个通道。
3 设计可编程玻色子量子模拟器 22 3.1 玻色子概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 48 3.3.2.3 最佳控制脉冲 . ...
Alayne K. EDWARDS 1、Steve SAVAGE 2、Paul L. HUNGLER 1 和 Thomas W. KRAUSE 3 1 加拿大皇家军事学院化学与化学工程系,加拿大安大略省金斯顿;电子邮件:Alayne.Edwards@forces.gc.ca,电子邮件:Paul.Hungler@rmc.ca 2 质量工程测试机构,45 Sacre-Coeur Blvd. 加蒂诺,加拿大;电子邮件:Steve.Savage.SJL@forces.gc.ca 3 加拿大皇家军事学院物理系,加拿大安大略省金斯顿;传真 001 613 541 6040;电话:+1 613 541 6000 x 6415;传真:+ 613541 6040;电子邮件:Thomas.Krause@rmc.ca 摘要 F/A-18 飞机的飞行控制面由碳/环氧树脂蒙皮和铝蜂窝芯复合材料组成,这种复合材料容易进水。由于水分导致蒙皮和芯之间的粘合性下降,方向舵在飞行中出现故障。目前,对方向舵表面进行手动透射超声波检测 (UT) 可将脱粘识别为接收信号幅度的减小。然而,蜂窝单元内的水提供了显著的声音传输,这可能会掩盖脱粘。在本研究中,首先使用热成像技术在两个在用方向舵内识别出水。然后通过中子射线照相术绘制出精确的水位置。使用喷射技术获得的透射 A 扫描的时间基分析允许区分单元壁信号和通过单元内水的信号。检查接收的单元壁信号强度