本文旨在分析两种可能的系留卫星系统架构的性能,这些系统用作分布式雷达探测仪的平台。第一种架构是横向轨道定向的系留卫星系统,利用与低地球轨道稀薄大气相互作用产生的空气动力进行控制和稳定。第二种架构涉及通过陀螺稳定控制的系留卫星系统,通过使系统围绕轨道平面内的轴旋转来实现。在简要介绍雷达探测技术之后,介绍了描述系统几何形状及其特性的方法,然后将这两种架构的性能相互比较并与当前最先进的技术进行比较。通过分析建模的标称行为,结果表明,这两种提出的架构可以在一个轨道内分别以最大横向轨道分辨率实现连续或多次观测,从而最大限度地减少杂波噪声。与通常每条轨道只能实现最多四次观测的编队飞行架构相比,这是一种显著的性能改进。最后研究了每种架构的优缺点,并讨论了其可能的任务场景。
Barr,R.,Coombs,R.,Doonan,I。,&McMillian,P。(2002)。目标识别奥利奥和相关物种。渔业部研究项目的最终研究报告OEO2000/01B,目标1。http://fs。Fish。Govt。Nz/page。Aspx?aspx?PK = 113DK = 113DK = 22653 Bassett,C.,De Robertis,A。A.和Wilson,C。D.(2018)。宽带回声测量了阿拉斯加湾鱼类和欧盟的频率响应。ICES海洋科学杂志,75(3),1131–1142。 https://doi。Org/10. 1093/iCesj MS/FSX204 Benoit-Bird,K。J.和Waluk,C。M.(2020)。 探索宽带渔业的承诺会回荡着物种歧视的人,并对数据处理效果进行Quantative评估。 美国声学学会杂志,147(1),411–427。 https:// doi。org/10。1121/10. 0000594 Blanluet,A.,Doray,M.,Berger,L.,Romagnan,J.-B.,Bouffant,N.L.,Lehuta,Lehuta,S。和Petitgas,P。(2019)。 使用宽带声学,网和视频来表征比斯威湾中声音散射层的表征。 PLOS ONE,14(10),E0223618。 https:// doi。org/10. 1371/journal。pone。0223618Brautaset,O.,Waldeland,A.U.,Johnsen,E.,Malde,K.,Malde,K.,Eikvil,L. (2020)。 使用深卷积神经网络中的多频率回声数据中的声学分类。 ICES海洋科学杂志,77(4),1391–1400。 https://doi。org/10. 1093/iCesj MS/FSZ235Briseño-Avena,C.,Roberts,P.L。D.,P. L. D.,Franks,P.J。S.,&Jaffe,J.S。(2015)。 中的方法ICES海洋科学杂志,75(3),1131–1142。https://doi。Org/10. 1093/iCesj MS/FSX204 Benoit-Bird,K。J.和Waluk,C。M.(2020)。探索宽带渔业的承诺会回荡着物种歧视的人,并对数据处理效果进行Quantative评估。美国声学学会杂志,147(1),411–427。https:// doi。org/10。1121/10. 0000594 Blanluet,A.,Doray,M.,Berger,L.,Romagnan,J.-B.,Bouffant,N.L.,Lehuta,Lehuta,S。和Petitgas,P。(2019)。使用宽带声学,网和视频来表征比斯威湾中声音散射层的表征。PLOS ONE,14(10),E0223618。https:// doi。org/10. 1371/journal。pone。0223618Brautaset,O.,Waldeland,A.U.,Johnsen,E.,Malde,K.,Malde,K.,Eikvil,L.(2020)。使用深卷积神经网络中的多频率回声数据中的声学分类。ICES海洋科学杂志,77(4),1391–1400。 https://doi。org/10. 1093/iCesj MS/FSZ235Briseño-Avena,C.,Roberts,P.L。D.,P. L. D.,Franks,P.J。S.,&Jaffe,J.S。(2015)。 中的方法ICES海洋科学杂志,77(4),1391–1400。https://doi。org/10. 1093/iCesj MS/FSZ235Briseño-Avena,C.,Roberts,P.L。D.,P. L. D.,Franks,P.J。S.,&Jaffe,J.S。(2015)。zoops-o 2:宽带回声器,具有协调的stepeo光学成像,用于观察原位浮游生物。
本文简要证明了相对于ECMWF预测模型,观察到的测得的空气偏差。证据的重量表明,大多数观察到的偏差及其与空气质量的变化可以归因于辐射转移建模(RTM)引起的错误。尽管RTM误差可能是复杂的,并且取决于许多因素,但在本文中表明,基于对通道吸收系数的调整的简单模型可以估算,并且可以估计其用于改善空气数据中全球和空气量依赖性偏见的结果。将测得的亮度温度与ECMWF NWP模型预测的偏离与从简单的吸收系数误差中预期的偏移进行比较,并使用最佳估计器来获得两个参数偏置模型的值:[Δ,γ]其中δ是全局常数和(γ-1)是层吸收系数的分数误差。