鸣谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。复制本出版物中的插图和其他材料必须先获得来源方的许可。 图 4-7,霍曼传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 4-8,快速传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif。
深度测定 1.简介 深度测定是水文测量员的一项基本任务,需要对介质、水下声学、可用于深度测量的大量设备、用于姿态和升沉测量的互补传感器以及适当的程序有具体的了解,以实现并满足国际推荐的精度和覆盖标准,如 IHO 出版物 S-44 第 5 版所述。铅垂线和测深杆是最早用于直接测量水深的方法。它们的简单操作原理确保了它们在许多世纪中持续使用。源自军用声纳的单波束回声测深仪是一项重大发展,自 20 世纪中期以来一直用于水文测量。在过去十年中,水文测量在深度测量技术和方法方面经历了概念上的转变。多波束回声测深仪 (MBES) 和机载激光测深系统 (ALS) 现在几乎可以覆盖整个海底并进行深度测量。高数据密度和高采集率产生了巨大的测深数据集和大量辅助数据。1998 年,编写第 4 版的 S-44 工作组对深度测量设备的最新技术进行了评估,结果如下:“单波束回声测深仪在浅水中的精度已达到亚分米级。市场上有各种不同频率、脉冲率等的设备。可以满足大多数用户,尤其是水文学家的需求。(…) 多波束回声测深仪技术正在迅速发展,如果使用适当的程序,并且系统的分辨率足以正确检测航行危险,则多波束回声测深仪技术具有进行准确和全面海底搜索的巨大潜力。机载激光测深是一项新技术,可以为浅水清澈水域的调查提供显着的生产力提升。机载激光系统能够测量 50 米或更深的深度。”尽管有这些新技术,但单波束回声测深仪 (SBES) 目前仍然是全球水文调查中使用的传统设备。这些回声测深仪也从模拟记录发展到数字记录,具有更高的精度和准确性,并具有可满足各种目的的特定功能。当需要全海底声波探测时,MBES 已成为深度测定的宝贵工具。数字回声测深仪与运动传感器、卫星定位系统(如 GPS)和数据采集软件的使用相结合,优化了生产效率,并相应减少了测量操作人员。越来越多的国家水文局 (NHO) 采用多波束技术作为收集新海图制作的水深数据的首选方法。
MARS Express上的Omega光谱仪获得了对火星肢体的几种观察,这些观察仪仍未得到探索。在这里,我们根据火星大气灰尘的丰度和大小来探讨这些数据的信息内容。我们通过应用全球散射蒙特卡洛1D辐射转移代码来接近灰尘检索,以建模0.5 - 2.5μm光谱范围(VNIR和SWIR OMEGA通道),以使粉尘有效半径和数量密度变化在大约之间。8和50公里。 这是该方法第一次应用于欧米茄肢体数据。因此,我们仅介绍三个研究案例,其中水冰低于可检测性水平,以便将未来更广泛应用之前的方法论问题,假设和表现重点放在。 该模型完全包含多种散射效应,这些散射效应已知是导致在不同高度和表面上采用的肢体之间的耦合。 开发了表面反射率的延长的三维建模,形成了肢体光谱的表面晶体。 发现VNIR通道可用于降低辐射转移溶液的退化。 在15至30 km之间产生0.85±0.15μm(对应于模态半径〜0.3μm的模态R m m 〜0.3μm)的尘埃垂直分布,与全球循环模型(GCM)一致,但在模型中的模型预测中,与模型相比的一个级数相当一致,但与模型之间的模型(MC)相当吻合(GCMS),这是一个模型和MARS的clls clls clls clls clls clls clys的clains。8和50公里。这是该方法第一次应用于欧米茄肢体数据。因此,我们仅介绍三个研究案例,其中水冰低于可检测性水平,以便将未来更广泛应用之前的方法论问题,假设和表现重点放在。该模型完全包含多种散射效应,这些散射效应已知是导致在不同高度和表面上采用的肢体之间的耦合。开发了表面反射率的延长的三维建模,形成了肢体光谱的表面晶体。发现VNIR通道可用于降低辐射转移溶液的退化。在15至30 km之间产生0.85±0.15μm(对应于模态半径〜0.3μm的模态R m m 〜0.3μm)的尘埃垂直分布,与全球循环模型(GCM)一致,但在模型中的模型预测中,与模型相比的一个级数相当一致,但与模型之间的模型(MC)相当吻合(GCMS),这是一个模型和MARS的clls clls clls clls clls clls clys的clains。实际上与MCS数据达成了总体协议,在一种情况下,欧米茄退休的尘埃与Hellas Basin的当地风暴兼容。在火星气候数据库中没有很好地表示,该数据库提供了每月平均统计数据。我们的结果证明了欧米茄肢体数据在定量上有助于火星尘埃研究的能力,尽管需要在探测的光谱范围内准确地对多个散射进行准确模拟多个散射,但仍需要进行较复杂且缓慢的辐射转移计算方案。在整个Omega肢体数据集中,理想的检索方法的理想应用也有助于评估当地沙尘暴的发生,需要进一步的工作,旨在包括水冰气溶胶和可能的热发射。是使用蒙特卡洛建模方法对欧米茄肢体数据进行的首次尝试,这项工作代表了一种有用的基准测试,用于更快,虽然准确,但较不准确,辐射转移模型。
第 3 章 深度测定 1.简介 深度测定是水文测量员的一项基本任务,需要对介质、水下声学、可用于深度测量的大量设备、用于姿态和升沉测量的互补传感器以及适当的程序有具体的了解,以达到并满足国际推荐的精度和覆盖标准,如 IHO 出版物 S-44 第 5 版所述。铅垂线和测深杆是最早用于直接测量水深的方法。它们的简单操作原理确保了它们在许多世纪中持续使用。源自军用声纳的单波束回声测深仪是一项重大发展,自 20 世纪中期以来一直用于水文测量。在过去十年中,水文测量在深度测量技术和方法方面经历了概念上的转变。多波束回声测深仪 (MBES) 和机载激光测深系统 (ALS) 现在几乎可以覆盖整个海底并进行深度测量。高数据密度和高采集率产生了巨大的测深数据集和大量辅助数据。1998 年,编写第 4 版的 S-44 工作组对深度测量设备的最新技术进行了评估,结果如下:“单波束回声测深仪在浅水中的精度已达到亚分米级。市场上有各种不同频率、脉冲率等的设备。可以满足大多数用户,尤其是水文学家的需求。(…) 多波束回声测深仪技术正在迅速发展,如果使用适当的程序,并且系统的分辨率足以正确检测航行危险,则多波束回声测深仪技术具有进行准确和全面海底搜索的巨大潜力。机载激光测深是一项新技术,可以为浅水清澈水域的调查提供显着的生产力提升。机载激光系统能够测量 50 米或更深的深度。”尽管有这些新技术,但单波束回声测深仪 (SBES) 目前仍然是全球水文调查中使用的传统设备。这些回声测深仪也从模拟记录发展到数字记录,具有更高的精度和准确性,并具有可满足各种目的的特定功能。当需要全海底声波探测时,MBES 已成为深度测定的宝贵工具。数字回声测深仪与运动传感器、卫星定位系统(如 GPS)和数据采集软件的使用相结合,优化了生产效率,并相应减少了测量操作人员。越来越多的国家水文局 (NHO) 采用多波束技术作为收集新海图制作的水深数据的首选方法。
参考文献[1] D. H. Staelin,A。H。Barrett,J。W。Waters,F。T。Barath,E。J。Johnston,P。W。Rosenkranz,N。E。Gaut,N。E。Gaut和W. B. Lenoir,“ Nimbus 5 Satellite:Microwave光谱仪5卫星:气象学和地球体物理学数据,Science,Science,Science,”。182,pp。1339–1341,1973。[2] W. L. Smith,“观察大气温度结构的卫星技术”,《美国气象学会公报》,第1卷。53,否。11,pp。1074–1082,1972年11月。[3] W. L. Smith,“卫星的大气响声 - 期望或改善天气预测的关键?”皇家气象学会季刊,第1卷。117,否。498,pp。267–297,1991年1月。[4] H. H. Aumann等人,“ Aqua Mission Airs/AMSU/HSB:设计,科学目标,数据产品和处理系统”,IEEE Trans。 Geosci。 遥感 ,卷。 41,否。 2,pp。 253–264,2003年2月。 [5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。 1-5,2001年10月。 [6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。” 化学。 Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。[4] H. H. Aumann等人,“ Aqua Mission Airs/AMSU/HSB:设计,科学目标,数据产品和处理系统”,IEEE Trans。Geosci。 遥感 ,卷。 41,否。 2,pp。 253–264,2003年2月。 [5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。 1-5,2001年10月。 [6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。” 化学。 Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Geosci。遥感,卷。41,否。2,pp。253–264,2003年2月。[5] G. Chalon,F。Cayla和D. Diebel,“ Iasi:运营气象学的高级声音”,IAF第52届大会的会议录,pp。1-5,2001年10月。[6] W. L. Smith,H。Revercomb,G。Bingham,A。Larar,H。Huang,D。Zhou,D。Zhou,J。Li,X。Liu和S. Kireev,“卫星Nadir Nadir观看卫星的进化,当前功能以及未来的进步,可在低频谱中观察到下大气层的超光谱IR声音。”化学。Phys。,第1卷。 9,pp。 5563–5574,2009。 Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Phys。,第1卷。9,pp。5563–5574,2009。Geosci。 遥感,第1卷。 43,否。 11,pp。 2535–2546,2005年11月。 11。Geosci。遥感,第1卷。43,否。11,pp。2535–2546,2005年11月。11。[7] W. J. Blackwell,“一种从高光谱分辨率探测数据中检索大气温度和水分突出的神经网络技术”,IEEE Trans。[8] W. J. Blackwell,“从高分辨率红外和微波炉发声数据中的大气温度和水分发明的神经网络检索”,《遥感的信号和图像处理》,C。C。C. Chen,编辑。Boca Raton,佛罗里达:Taylor和Francis,2006年,Ch。[9] W. J. Blackwell和F. W. Chen,大气遥感中的神经网络。马萨诸塞州波士顿:Artech House,2009年。[10] W. J. Blackwell,M。Pieper和L. G. Jairam,“在存在云的存在下使用Airs/Iasi/AMSU对大气发明的神经网络估算”,Spie Asia+C遥感研讨会,2008年11月,[11] B. Lambrigtsen,S。Brown,T。Gaier,P。Kangaslahti和A. Tanner,“际调查路径任务的基线”,IEEE IGARSS会议记录,第1卷。3,2008年7月,pp。338–341。[12] W. J. Blackwell等人,“高光谱微波大气发声”,IEEE Trans。Geosci。 遥感 ,审查,2009年。Geosci。遥感,审查,2009年。
过去的五十年见证了卫星遥感成为在当地,区域和全球空间尺度上测量地球的最有效工具之一。这些基于空间的观测值具有无损特征,可快速监测环境大气,其基础表面和海洋混合层。此外,卫星仪器可以观察到有毒或危险环境,而不会使人员或设备处于危险之中。大规模连续的卫星观测值补充了详细(但稀疏)的现场观测,并为理论建模和数据同化提供了无与伦比的体积和内容的测量。目前有大量非常重要的应用程序依赖于卫星的数据。对大气的观察用于天气预测,监测环境污染,气候变化等。(Wielicki等,1996)。海洋表面的遥感用于监测海岸线动力学,海面温度和盐度,海洋生态系统和碳生物量,海平面变化,海洋杂物和薄壁,水流和浅水区的基础地形的映射等。(Fu等,2019)。从卫星中对土地的遥感极大地有助于探索矿产资源(Zhang等,2017),对浮游和干旱的监测(Jeyaseelan,2004年),土壤水分,土壤水分(Lakshmi,2013; Babaeian et al。 (Lentile等,2006),农业监测(Atzberger,2013年),城市规划(Kadhim等,2016)等。最后,社会科学对全球危机进行调查(例如Covid-19大流行)的努力是从利用各种有针对性可视化来对人类环境进行分类的卫星遥感数据集中受益的,然后将这些观察结果与各种社会经济数据集联系在一起。(Diffenbaugh等,2020)。此外,卫星遥感为收集全球信息(例如1)行星地形等全球信息提供了有效的工具; 2)温度,水蒸气,二氧化碳和其他痕量气体的大气中; 3)表面和大气的矿物质和化学成分,以及4)冰冻层的特性,例如雪,海冰,冰川和融化池,以及5)热球,电离层和磁层的颗粒和电磁特性。对地球的遥感也可以提高艺术的技术状态,这有助于发展深空遥感任务,例如Voyager(Kohlhase和Penzo,1977)和Cassini-Huygens太空研究任务(Matson等人,2002年)。在观测卫星发育的早期阶段,卫星传感器的设计通常是高度针对性的。例如,在1970年代发射了一系列仪器:Landsat和高级高分辨率辐射仪(AVHRR)仪器,针对监视陆地表面和云的监视,总臭氧映射光谱仪(TOMS)仪器(TOMS)仪器,集中于观察总柱ozone和高分辨率的基础辐射仪器(HIGH-RADIARE RADIARE SUSTIRES)仪器(HIR-RADIARE SONDER SUPSERINTY)。这些任务的部署为每个目标主题提供了独特的数据,并由
Sound Transit 31 亿美元的 2024 年预算标志着该机构进入了一个历史性的早期阶段,因为我们的使命是通过一系列 Link 轻轨延长线将更多人与普吉特海湾的更多地方连接起来。在接下来的几年里,我们将把 Link 轻轨网络扩大一倍,到 2026 年底增加 62 英里和 41 个车站。我们于 2023 年 9 月启动了这一积极的服务扩展计划,通过 Hilltop Link 延长线在我们的塔科马 T 线上开设了六个新车站。这条延长线使塔科马系统的长度增加了一倍,增加了 2.5 英里。2024 年,当我们开通两项主要服务扩展时,新 Link 轻轨的开通将加速:6.3 英里、8 站的 East Link 起始线,这是我们新 2 号线的第一段,以及 8.5 英里、4 站的 Lynnwood Link 延长线。2024 年预算拨款 2000 万美元用于运营塔科马 T 线,包括全年的 Hilltop Link 延长线; 2.06 亿美元用于东环线延伸项目,包括 2024 年春季开通的起始线;2.47 亿美元用于完成建设和安全测试,以便于 2024 年秋季开通的林伍德环线延伸项目。我们的工作和 2023 年全年的重大成就为我们雄心勃勃的 2024 年推出和在选民批准的 ST3 计划下继续扩张奠定了基础,ST3 计划是该国最大的公共交通扩建项目。三月份,董事会确定了 7.1 英里长的 Ballard 环线延伸的首选方案。七月份,董事会为我们网络扩建的另一种模式设定了时间表和基准预算,即在 Burien 和 Lynnwood 之间的 I-405 走廊上以及 Shoreline 和 Bothell 之间的 SR 522 上的 46 英里 Stride 快速公交线路。这种新的 Sound Transit 公交服务模式使用快速优先车道、车外支付、多个门出口和入口以及更多的直线车站;它将比目前的 ST Express 服务平均快 20 分钟。该项目于 2023 年 9 月破土动工,同周我们在塔科马开通了新的 T 线服务。I-405 S 和 SR 522 上的 Stride 预计将于 2028 年开通,I-405 N 预计将于 2029 年开通。8 月,董事会批准了 East Link 起始线和 Lynnwood Link 延长线于 2024 年开通的顺序。其他 2023 年的亮点使我们有望在扩建方面取得进展,包括:降低 ORCA LIFT 票价,这将使依赖公共交通的乘客的成本负担降低 33%;正式从金县地铁手中接管西雅图市中心交通隧道,这将提升我们应对 East Link、Lynnwood Link 和 Federal Way Link 延长线带来的大幅客流量增加的能力;开放 Lynnwood 车库,为斯诺霍米什的交通用户提供 1,600 多个停车位;开放普亚勒普车库,为 Sounder S Line、Sound Transit Express 和 Pierce Transit 的乘客提供 1,000 多个停车位;开放雷德蒙德科技站车库,增加了 300 辆汽车和 100 辆自行车的空间;并开通了连接我们未来的雷德蒙德科技站和微软园区的人行天桥,横跨 SR 520。我们还修复了西雅图市中心车站所有长期故障的电梯和自动扶梯,并于今年夏天全面恢复服务,试行了新的路线导航和无障碍应用程序,并移动了市中心车站的付费车站标识牌。我们的公共交通导向发展计划在 2023 年也很强劲。我们在西雅图 First Hill 开设了 The Rise on Madison,提供 365 套经济适用房,在西雅图 Capitol Hill 开设了 Pride Place,提供 118 套经济适用房。此外,我们在 Angle Lake North 破土动工,将包括 130 套经济适用房,我们在 Rainier Valley Homeownership Sites 破土动工,在三个地点提供七个单元。 2023 年,疫情后的客流量继续反弹。这不仅仅是指 7 月份创纪录的客流量,当时泰勒·斯威夫特演唱会和美国职业棒球大联盟全明星周期间,每天分别有 13 万和 10 万名乘客使用 Link。2023 年,我们的客流量与疫情前的客流量持平,平均每天超过 8 万次登车。扩大列车和车站的安全措施也是 2023 年的一个决定性方面。与全国的系统一样,Sound Transit 的列车上的破坏性活动有所增加,包括吸毒。为了更好地控制这种情况,我们最近在 2023 年 3 月与新的安全提供商签约。这些
