目前,GPS观察允许使用断层扫描衍生4-D大气(对流层或电离层)模型。为此,GPS数据用于估计对流层的倾斜对流层延迟(STD)(例如,Pottiaux,2010年)和电离层的倾斜总电子含量(STEC)(例如Bergeot等,2010)。层析成像方法包括通过体素(代表对流层或电离层)的体素离散数量(体素为3D像素,图1)。这允许在断层网格分辨率下获取有关这些参数的分布变化的信息(Mitchell和Spencer,2003年)。在不久的将来,使用Glonass和Future Galileo系统以及增加地面GNSS网络增加了STD和STEC的观察结果,这将减少对先验信息的依赖,最终导致大气中的层析成像主要基于数据(Bust and Mitchell,Mitchell,2008; Bender and Rababe,2007年)。
项目描述中间大气处的连续温度声音对于理解许多垂直耦合过程至关重要,这些垂直耦合过程是由不同尺度上大气波驱动的。尤其是,在平流层/对流层上部的大气潮流及其间歇性尚未得到充分理解和连续的温度测量值对研究其源区域的这种可变性有益。微波遥感技术在此高度区域提供了独特的观察功能。成功的PhD候选者将参与新型毫米波辐射计的开发,以在中间大气中发出温度。这包括实验室和高山高海拔研究站的初始系统测试,以及与国际合作伙伴的现场活动中的仪器部署。她或他将负责检索算法,科学数据分析和大气模拟的发展。要求和应用职位需要物理学硕士学位或工程或环境科学的紧密相关领域。仪器,实验室工作和编程语言的经验(例如matlab,fortran,python)是一个明显的优势。有兴趣的申请人应将其课程范围(包括专业经验),一页动机信,至少一个参考人员的联系方式以及在硕士和单身汉级别获得的成绩向Gunter Stober博士发送。这些观察结果是与国家和国际合作伙伴合作进行的(例如进一步的信息IAP微波司在微波遥感大气方面具有全球公认的专业知识。它在瑞士和远程观测站的运动基地上运行一套地面仪器,以测量臭氧,水蒸气,风和温度。Meteoswiss,DLR),是欧盟Horizon 2020项目的一部分。IAP是伯尔尼大学气候变化研究中心(OCCR)跨学科的成员,学生将从该中心的课程和网络活动中受益。薪水将根据瑞士国家科学基金会SNSF的规定确定。IAP正在积极寻求增加物理学中的妇女人数,因此强烈鼓励妇女申请。关于伯尔尼大学伯尔尼大学的位于瑞士中心。 伯尔尼市是瑞士和广州伯尔尼的首都,并设有一个美丽的历史悠久的老城区中心。 公共交通便可以很容易地访问具有高山环境的伯尼斯·奥伯兰(Bernese Oberland)。位于瑞士中心。伯尔尼市是瑞士和广州伯尔尼的首都,并设有一个美丽的历史悠久的老城区中心。公共交通便可以很容易地访问具有高山环境的伯尼斯·奥伯兰(Bernese Oberland)。
在升空或发射后(情况下)尽快在特殊注册表中的注册,并且在本法规范围内提出或启动活动后的三十(30)天。确认根据上一段提交的注册信息的有效性,自开展空间空间支撑飞行活动或高海拔活动之日起的最长14(14)天内。
摘要该论文介绍了有关近实时大气发声系统的研究。这项研究的主要目的是基于天气气球的天气音响系统的开发和测试。该系统包含一个冗余的辐射系统,一个包含天气气球和固定系统以及地面站的起重平台。该系统的几项测试在2019年8月和9月进行。高度,可靠性,对天气条件和数据收敛性的抵抗力。在测试中,开发了此类任务的新程序。对ILR-33琥珀色火箭进行了最终测试,作为预发射程序的一部分。该测试成功,并允许使用获得的大气数据进行进一步处理。得出了几个测试后的结论。天气气球发声的高度主要取决于天气条件,泵送的气体和有效载荷的重量。机组人员的发射场所和经验在任务的最终成功中也起着重要作用。
图1:(a)Tesseract磁力计设计在30%玻璃填充的Torlon工程塑料的对称块中固定了六个微型低噪声赛车芯。这些赛道芯是由Miles等人(2022年)开发的,用准螺旋驱动绕组包裹,以调节核心的渗透性,然后用螺线管般的旋转旋转覆盖以感知调制信号。Tesseract的反馈线圈在相同的玻璃填充摩托底座上缠绕,以实现结构稳定性。这些反馈线圈(红色)以三个轴四轴Merritt线圈排列,该线圈在传感器内部产生了巨大的磁同质性区域。(b)Aut Build 80
对远程发声器的要求在需要较细的网格网格的驱动下,以获取更多本地信息高分辨率(地理,海拔,垂直,辐射和频谱)成本效益,紧凑的仪器=>激光官方隔离式辐射计(LHR)
远程监测痕量大气气体(标签)的浓度(包括许多有害混合物)仍然是一个紧迫的问题。IR区域,尤其是2.5-14 µm范围,对于大气发声非常有前途,因为该范围包括几乎所有大气气体的强吸收线。此外,IR范围包括六个透明窗口。为了覆盖近红外和中期范围,通常使用非线性晶体的光学参数振荡器(OPO)的辐射[1-3]。在这项工作中,我们考虑了一个激光系统(在Solar Laser System Company设计),该系统是设计差异吸收激光龙的一部分;它提供了3–4 µM光谱范围内的纳秒辐射脉冲的可调节产生。根据激光的规格,估计了在此光谱范围内HCl和HBR沿对流层路径的可能性。提出了搜索信息波长的结果以及在上述气体的差分吸收声音中计算激光雷达回声信号的结果。
摘要。为了评估风能应用的当前遥感能力,一项遥感系统评估研究称为XPIA(实验性的行星边界层仪器评估),于2015年春季在NOAA的Bolder大气天文台(BAO)举行。评估了几个遥感平台,以确定其对用于测试数字天气前词典模型准确性的验证和验证过程的适用性。对这些平台的评估是通过对精确的参考系统进行的:BAO的300 m塔,配备了六个级别(50、100、100、150、200、200、250和300 m),具有12个超音量计和六个温度(T)和相对湿度(RH)传感器;大约有60台辐射式发射。在这项研究中,我们首先采用了这些参考测量值来验证通过两个共同定位的微波辐射仪(MWRS)以及通过配备有无线电声音系统(RASSS)共同定位的风辐射雷达测得的温度(MWRS)以及通过共处于共同定位的风能辐射雷达(t)来检索的温度。结果表明,在大气的最低5 km中,微波辐射仪低于1.5 k的温度中的平均绝对误差(MAE),在大气中的虚拟温度中,在无线电声音系统中测得的虚拟温度中的平均绝对率在0.8 k覆盖的0.8 k层(这些测量层)(大约1.6 – div/dif)中的0.8 k层>
抽象的基于空间的高光谱发射器,例如大气红外发声器,红外大气发声干涉仪以及极性轨道卫星上的交叉轨射红外声音,可从中获得辐射度测量值,从中可以从中取回大气温度和湿度的利润。这些检索产品是在全球范围内提供的,其空间和时间分辨率需要补充传统的数据源(例如辐射量和模型场)。本文的目的是证明新一代卫星高光谱数据产品中的现有天气和环境监测中现有的努力如何受益。我们调查了如何在时间序列中使用所有四个操作声音器的检索来监测导致严重当地风暴爆发的前向环境。我们的结果表明,独立,一致和高质量的高光谱信息对实时监视应用程序的潜在受益。
上大气风的测量非常困难。在使用Sounding Rocket的化学释放实验中,我们一直在开发一种用于测量中性风的新技术。在轨迹上释放锂蒸气可以使多个地位位点的共振散射光进行成像。开发高的S/N成像和精确的三角剖分分析技术将有助于理解地球上的长期气候变化。2)开发稀有中性气氛测量技术