简介 CRISPR/Cas9 系统彻底改变了植物基因工程领域 1-3 。为了促进植物中先进而精确的定点诱变,CRISPR/Cas9 系统的表达模块经常作为外来 DNA 整合到宿主基因组中。这种整合通常通过粒子轰击或农杆菌介导的转化等方法实现 4-5 。然而,基因组编辑过程通常会在特定的目标植物物种和菌株中遇到挑战。这些挑战主要源于转化过程中植物再生关键步骤可用基因型的限制。值得注意的是,农杆菌介导的拟南芥花浸法 6 或小麦粒子轰击 7 等方法已成功直接生产出基因组编辑植物,
摘要。大豆是蛋白质,纤维和植物化学异黄酮的来源,被认为对儿童和成年具有许多健康益处。另一方面,异黄酮被广泛称为植物雌激素,通过雌激素信号通路发挥作用。在这方面,异黄酮也被视为干扰化学物质。内源性雌激素通过与雌激素受体(ERS)或G蛋白偶联的雌激素受体1(GPER1)结合而在脑发育中起着至关重要的作用,并调节神经元和神经胶质细胞的迁移,功能成熟,功能成熟和细胞内代谢。大豆异黄酮也可以与ERS GPER1结合,此外,其他受体可以调节其作用。因此,大豆异黄酮的消费可能会在产后和产后期间影响大脑发育。本综述总结了当前有关异黄酮作用机制的知识,特别是在大脑发育的早期阶段,通过引入代表性的人类和动物模型以及体外研究,并讨论了它们对Neurobehavior的有益和不利影响。作为结论,在适当的剂量范围内,在产前和产后期间的大豆产品消耗在神经行为的发育中显示出有益的影响,包括改善焦虑,攻击性,活跃行为和认知,而通过服用更高剂量的不良影响则不能排除。我们还提出了新的研究线,以进一步评估大豆在大脑发育过程中给药的影响。
〜90%CO 2的降低降低了约50%CO 2的降低〜50%CO 2-排放量•产品 - 环境(PEF)方法;基于主要数据•数据库中的“品牌数据集”可用:
Glyceollins是一种在豆类物种中引起的植物毒素家族,在环境压力反应(例如防御病原体)和人类健康中起着至关重要的作用。However, little is known about the genetic basis of glyceollin elicitation.在本研究中,我们采用了一种基于代谢物的基因组 - 宽缔合方法(MGWA)方法来鉴定在遗传多样的甘油蛋白诱导的候选基因,并正在研究遭受大豆囊肿线虫的野生大豆。In total, eight SNPs on chromosomes 3, 9, 13, 15, and 20 showed signi fi cant associations with glyceollin elicitation.六个基因分为两个基因簇,它们在苯基丙烷途径中编码糖基转移酶,并在物理上接近染色体9。此外,还发现转录因子(TFS)基因(例如MYB和WRKY)是有前途的候选基因,与染色体上的显着SNP紧密联系。Notably, four signi fi cant SNPs on chromosome 9 show epistasis and a strong signal for selection.The fi ndings describe the genetic foundation of glyceollin biosynthesis in wild soybeans; the identi fi ed genes are predicted to play a signi fi cant role in glyceollin elicitation regulation in wild soybeans.此外,自然种群中的上皮相互作用和选择影响甘油蛋白的变异如何应进一步研究以阐明甘糖苷生物合成的分子机制。
摘要。大豆是蛋白质,纤维和植物化学异黄酮的来源,被认为对儿童和成年具有许多健康益处。另一方面,异黄酮被广泛称为植物雌激素,通过雌激素信号通路发挥作用。在这方面,异黄酮也被视为干扰化学物质。内源性雌激素通过与雌激素受体(ERS)或G蛋白偶联的雌激素受体1(GPER1)结合而在脑发育中起着至关重要的作用,并调节神经元和神经胶质细胞的迁移,功能成熟,功能成熟和细胞内代谢。大豆异黄酮也可以与ERS GPER1结合,此外,其他受体可以调节其作用。因此,大豆异黄酮的消费可能会在产后和产后期间影响大脑发育。本综述总结了当前有关异黄酮作用机制的知识,特别是在大脑发育的早期阶段,通过引入代表性的人类和动物模型以及体外研究,并讨论了它们对Neurobehavior的有益和不利影响。作为结论,在适当的剂量范围内,在产前和产后期间的大豆产品消耗在神经行为的发育中显示出有益的影响,包括改善焦虑,攻击性,活跃行为和认知,而通过服用更高剂量的不良影响则不能排除。我们还提出了新的研究线,以进一步评估大豆在大脑发育过程中给药的影响。
目标1:为大豆开发有效的无PAM无PAM CAS9和主要的编辑平台。这是一个基因编辑工具开发目标,它基于我们先前开发的CRISPR-CAS9基因编辑平台。为大豆建造主要的编辑系统。基于SPCAS9 Nickase的两个不同变体和M-MLV的逆转录酶,已经为大豆毛的根和稳定的转化和基因组编辑制作了三个主要的编辑系统。分别使用命名为PE1,PE2和PE3的三个系统,以制造针对编码CDPK47,CDPK48,CDPK49和CDPK50的大豆基因的主要编辑构建体。PE1和PE2系统,以确定哪种最适合于创建精确的遗传变化,以改善大豆的性状。不幸的是,这两个系统无效地在毛状根中的四个CDPK基因中创建突变。因此,我们决定使用PE2系统测试其他基因FAD2和EPSP,并且再次没有发现靶基因已修改的证据。第三个Prime编辑版本,名为PE3,还测试了在毛状根部编辑FAD2和EPSP基因的能力,这也没有成功。PE1,PE2和PE3 PRIME编辑构建体在大豆中似乎不起作用,因此我们正在采用替代方法来修改向量,以使用不同的策略来生成Prime编辑指南RNA。这些结构将在下一个报告期间进行测试。总而言之,使用在其他工厂中使用的策略,在大豆中的主要编辑应用并不能有效。1。我们继续努力确定将在大豆中有效的主要编辑策略。目标2:应用基础编辑和主要编辑来修改影响大豆对干旱反应的基因。我们设计了两种不同的CRISPR-Cas9构建体来敲除CDPK基因的功能,这些功能被预测会影响大豆对干旱的反应。基于CRISPR-CAS9的基因敲除大豆CDPK家族基因(CDPK47、48、49和50)的两个CRISPR构建体(NK44和NK46)已建立,以敲除CDPK基因的两种组合。a。 NK44:PATEC-INCAS9-GCDPK49-50(靶向CDPK49和CDPK50)b。 NK46:PATEC-INCAS9-GCDPK47-50(靶向CDPK47,CDPK48,CDPK49和CDPK50)对这两种构建体进行了大豆转化,并为转染料的存在而基因型进行了基因型。我们为NK44构建体获得了四个转基因阳性植物。我们总共获得了NK46构建体的七个转基因阳性植物。种子,我们将这些种子称为T1代。至少为每条线发芽了至少24个T1幼苗,我们进行了PCR首先确定NK44或NK46构建体是遗传的,我们
© 作者 2024。开放存取。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
作为嘉吉(Cargill),我们很荣幸能连接市场的这两个方面,并建立适合所有人的供应链解决方案。在过去的一年中,我们在使用农场级多边形绘制直接供应链方面取得了巨大进展,为我们采购大豆的所有国家完成了这项工作(请参阅第145页)。我们还与间接供应商互动以提高尽职调查。,我们与广泛的合作伙伴共同开发了许多项目和解决方案,以恢复森林,证明可持续生产并提高供应链可追溯性。同时,我们了解和减轻供应链中风险的控制系统从未如此强大(请参阅第146页)。
农民和农学家通过计算相对较小区域的植株数、每株豆荚数和每豆荚种子数,并推断整个田地面积,来估算大豆 (Glycine max) 的产量。这些信息虽然有趣,但却是劳动密集型的,在应用于整个田地规模时可能无法提供有用和准确的信息。例如,de Souza 等人。(2023) 报告称,要评估植物的表型特征,应评估 2.7 平方米区域内 21 株大豆植物的四个性状。但是,当这种为小块地设计的采样方案扩展到可能大于 650,000 平方米 (65 公顷) 的田地时,采样要求很快就会变得难以管理。因此,精准农业需要一种替代方法来估算大豆产量。