正向遗传筛选试图通过系统地扰动遗传元素并观察由此产生的表型来解剖复杂的生物系统。虽然标准筛选方法引入了单个扰动,但多重扰动可提高单靶筛选的性能,并实现用于研究遗传相互作用的组合筛选。当前用于多重扰动的工具与需要嵌入 mRNA 条形码的汇集筛选方法不兼容,包括一些显微镜和单细胞测序方法。在这里,我们报告了 CROPseq-multi 的开发,这是一种受 CROPseq 1 启发的慢病毒系统,用于多重化脓性链球菌 (Sp) Cas9 扰动和嵌入 mRNA 条形码。CROPseq-multi 具有与 CROPseq 相同的每引导活性和较低的慢病毒重组频率。 CROPseq-multi 与富集筛选方法和光学池筛选兼容,并可扩展到具有单细胞测序读数的筛选。对于光学池筛选,优化和多路复用的原位检测方案可将条形码检测效率提高 10 倍,能够检测重组事件,并将解码效率提高 3 倍(相对于 CROPseq)。CROPseq-multi 是一种广泛适用的多路复用解决方案,适用于各种基于 SpCas9 的遗传筛选方法。
摘要 全基因组功能性遗传筛选已成功发现基因型-表型关系并设计新表型。虽然广泛应用于哺乳动物细胞系和大肠杆菌,但在非常规微生物中的使用受到限制,部分原因是无法准确设计此类物种的高活性 CRISPR 向导。在这里,我们开发了一种针对所选生物体(在本例中为产油酵母解脂耶氏酵母)的 sgRNA 设计实验计算方法。在不存在非同源末端连接(主要的 DNA 修复机制)的情况下进行负选择筛选,用于生成 SpCas9 和 LbCas12a 的单个向导 RNA (sgRNA) 活性谱。这种全基因组数据作为深度学习算法 DeepGuide 的输入,该算法能够准确预测向导活性。 DeepGuide 使用无监督学习来获取基因组的压缩表示,然后通过监督学习来映射具有指导活性的 sgRNA 序列、基因组背景和表观遗传特征。全基因组和选定基因子集的实验验证证实了 DeepGuide 能够准确预测高活性 sgRNA。DeepGuide 提供了一种生物体特异性的 CRISPR 指导活性预测因子,可广泛应用于真菌物种、原核生物和其他非常规生物。
CRISPR-Cas9 系统广泛用于靶向基因组工程。Cpf1 是 CRISPR 效应子之一,通过识别富含胸腺嘧啶的原间隔区相邻基序 (PAM) 序列来控制靶基因。Cpf1 对向导 RNA 中的错配的敏感性高于 Cas9;因此,脱靶序列识别和切割较低。但是,它可以容忍原间隔区中远离 PAM 序列 (TTTN 或 TTN) 的区域中的错配,并且当 Cpf1 活性因治疗目的而得到改善时,脱靶切割问题可能会变得更加成问题。在我们的研究中,我们研究了 Cpf1 的脱靶切割,并修改了 Cpf1 (cr)RNA 以解决脱靶切割问题。我们开发了一种 CRISPR-Cpf1,它可以通过用 DNA 部分替换 (cr)RNA 来改变碱基配对的能量势,从而以高度特异性和有效的方式诱导靶 DNA 序列中的突变。提出了一个模型来解释嵌合 (cr)RNA 引导的 CRISPR-Cpf1 和 SpCas9 切口酶如何在细胞内基因组中有效发挥作用。在我们的结果中,当使用嵌合 DNA-RNA 引导进行基因组编辑时,CRISPR-Cpf1 在细胞水平上诱导的脱靶突变较少。这项研究有可能用于治疗无法治愈的癌症
肌营养不良症是约 50 种毁灭性的、无法治愈的单基因疾病,会导致进行性肌肉退化和萎缩。使用基于 CRISPR/Cas9 的工具对可移植细胞进行基因校正是自体细胞替代疗法恢复许多遗传疾病器官功能的现实方案。然而,肌肉干细胞迄今为止一直落后,因为缺乏分离和繁殖它们的方法,而且它们易受大量离体操作的影响。在这里,我们展示了基于 mRNA 的 SpCas9 和腺嘌呤碱基编辑器的递送,可在来自许多捐赠者的人类肌肉干细胞中实现高达 90% 以上的基因组编辑效率,无论年龄和性别如何,并且无需任何富集步骤。使用 NCAM1 作为所有肌肉干细胞表达的内源性报告基因座,并且其敲除不会影响细胞适应性,我们表明用 mRNA 编辑的细胞完全保留了其成肌标记特征、增殖能力和功能属性。此外,基于 mRNA 的碱基编辑器递送可在单个无选择步骤中高效修复导致肌肉萎缩的 SGCA 突变。总之,我们的工作确立了基于 CRISPR/Cas9 的工具的 mRNA 介导递送是一种有前途且通用的方法,可将基因编辑的肌肉干细胞用于临床治疗肌肉疾病。
使用病毒载体(例如AAV)实现了体内基因编辑,但是这些稳定的基于DNA的载体导致Cas9核糖核酸酶和SGRNA在细胞7中的长期表达。虽然扩展到编辑机械的接触可能有利于基因校正率,但它也可能导致脱靶遗传改变的积累8,9。此外,AAV CAPSIDS的免疫原性触发中和抗体和T细胞反应限制了基于AAV的治疗方法的重复给药10;但是,由于较高的细胞周转率11,肺中的基因编辑受益于重复给药。此外,尺寸限制对将有效的Pyogenes CRISPR-CAS9(SPCAS9)构建体构成了挑战,将其限制到AAVS 12中。可以通过非病毒,基于mRNA的递送平台来克服这些局限性,该平台能够瞬时表达并重复给药13。LNP是最先进的非病毒载体,如Moderna和Pfizer/Biontech开发的广泛接受的mRNA疫苗技术所见,并在Cas9肝基因编辑平台14-16中显示出巨大的希望。然而,尚未报告基于LNP的CAS9递送系统,用于有效的肺基因修饰。与肝脏相比,由于其专门的细胞类型,粘液屏障和粘膜缩减清除率,肺部对分娩构成了独特的挑战。因此,由于大多数病毒和非病毒方法17,气道上皮仍然很差,因此仍然需要采取有效的方法。
摘要:化脓性链球菌 Cas9 蛋白 (SpCas9) 是微生物中基于 CRISPR 的免疫系统的一个组成部分,已广泛用于基因组编辑。该核酸酶与向导 RNA (gRNA) 形成核糖核蛋白 (RNP) 复合物,从而诱导 Cas9 结构变化并触发其切割活性。在这里,电子圆二色性 (ECD) 光谱用于确认 RNP 的形成并确定其各个组成部分。ECD 光谱具有区分 Cas9 和 gRNA 的特征,前者显示出负/正谱,最大值位于 221、209 和 196 nm,而后者显示出正/负/正/负模式,条带分别位于 266、242、222 和 209 nm。首次展示了 gRNA:Cas9 RNP 复合物的实验 ECD 光谱。它表现出双标记正/负 ECD 偶联,最大值位于 273 和 235 nm,并且与每个 RNP 成分的单独光谱有显著不同。此外,Cas9 蛋白和 RNP 复合物在 ECD 测量后仍保留生物活性,并且它们能够在体外结合和裂解 DNA。因此,我们得出结论,ECD 光谱可被视为一种快速且无损的方法,用于监测 Cas9 蛋白因 Cas9 和 gRNA 相互作用而发生的构象变化,以及鉴定 gRNA:Cas9 RNP 复合物。
基因编辑有可能解决农业、生物技术和人类健康领域的基本挑战。源自微生物的基于 CRISPR 的基因编辑器虽然功能强大,但在移植到非原生环境(例如人类细胞)时通常会表现出显著的功能权衡。人工智能 (AI) 支持的设计提供了一种强大的替代方案,有可能绕过进化限制并生成具有最佳属性的编辑器。在这里,使用在大规模生物多样性上训练的大型语言模型 (LLM),我们展示了首次使用 AI 设计的可编程基因编辑器成功精确编辑人类基因组。为了实现这一目标,我们通过系统地挖掘 26 兆碱基的组装基因组和元基因组,整理了超过一百万个 CRISPR 操纵子的数据集。我们通过生成自然界中发现的 CRISPR-Cas 家族中 4.8 倍的蛋白质簇数量并为 Cas9 样效应蛋白定制单向导 RNA 序列来展示我们模型的能力。生成的几个基因编辑器与 SpCas9(典型的基因编辑效应器)相比,表现出相当或更好的活性和特异性,同时在序列上相差 400 个突变。最后,我们展示了一个 AI 生成的基因编辑器,称为 OpenCRISPR-1,它表现出与碱基编辑的兼容性。我们公开发布 OpenCRISPR-1,以促进在研究和商业应用中广泛、合乎道德的使用。
CRISPR 疗法的临床成功取决于 Cas 蛋白的安全性和有效性。来自新凶手弗朗西斯菌 (FnCas9) 的 Cas9 对错配底物的亲和力可以忽略不计,这使得它即使在结合水平上也能以非常高的精度区分 DNA 中的脱靶。然而,它的细胞靶向效率很低,限制了它在治疗应用中的使用。在这里,我们合理地设计了蛋白质以开发增强的 FnCas9 (enFnCas9) 变体,并将其细胞编辑活性扩展到以前无法访问的基因组位点。值得注意的是,一些变体释放了从 NGG 到 NGR/NRG 的原间隔区相邻基序 (PAM) 约束,使其在人类基因组位点上的可访问性增加了约 3.5 倍。enFnCas9 蛋白在体外和细胞中都具有单一错配特异性,从而扩大了基于 FnCas9 的 CRISPR 诊断的靶标范围,用于检测点突变和致病 DNA 特征。重要的是,它们在编辑效率、敲入率和脱靶特异性方面比其他经过设计的 SpCas9 高保真版本(SpCas9-HF1 和 eSpCas9)更胜一筹。值得注意的是,enFnCas9 变体可以与延长长度的 gRNA 结合使用,在 PAM 约束的规范碱基编辑器无法访问的位点进行强大的碱基编辑。最后,我们展示了使用 enFnCas9 腺嘌呤碱基编辑器完全纠正患者衍生的 iPSC 中的疾病特异性视网膜色素变性突变,突出了其在治疗和诊断中的广泛应用。
背景:衰老、噪音、感染和耳毒性药物是人类获得性神经性听力损失的主要原因,但治疗选择有限。CRISPR/Cas9 技术具有成为获得性非遗传性神经性听力损失的新治疗方式的巨大潜力。在这里,我们开发了 CRISPR/Cas9 策略来预防氨基糖苷类药物引起的耳聋,这是一种常见的获得性非遗传性神经性听力损失,通过破坏内耳中的 Htra2 基因来预防,该基因参与细胞凋亡,但在耳蜗毛细胞保护中尚未被研究。结果:结果表明,腺相关病毒 (AAV) 介导的 CRISPR/SpCas9 系统递送可改善新霉素诱导的细胞凋亡,促进毛细胞存活,并显着改善新霉素治疗小鼠的听力功能。AAV - CRISPR/Cas9 系统在体内的保护作用在暴露于新霉素后可持续长达 8 周。为了更有效地传递整个 CRISPR/Cas9 系统,我们还探索了 AAV - CRISPR/SaCas9 系统来预防新霉素引起的耳聋。SaCas9 系统的体内编辑效率平均为 1.73%。与未注射的耳朵相比,我们观察到注射耳朵的听觉脑干反应阈值有显著改善。在暴露于新霉素 4 周后,AAV - CRISPR/SaCas9 系统的保护作用仍然明显,听觉脑干反应阈值在 8 kHz 时改善高达 50 dB。
平台,它可以通过DNA结合CAS和DNA修饰脱氨酶组成的基础编辑器的模块化组件,该基础编辑器通过在序列靶向指导指南RNA(GRNA)中编码的适体相关的Deaminase组件组成。由于适体依赖于脱氨酶成分靶向DNA序列,PIN点平台唯一地允许多对单个Cas Nickase组件进行多用作用于同时多发性基础编辑和靶向的转基因敲入。编码由大鼠APOBEC1和SPCAS9 NICKASE组成的PIN点基本编辑器的mRNA瞬时传递与合成适性剂编码的GRNA结合使用,可实现耐用的靶蛋白敲除,并显着提高了细胞生存能力,编辑效率,以及与CRISPR-CasS9相比,基因组的编辑效率和基因组完整性均与CRISPR-CasS9相比。为了演示同种异体PSC工程的PIN点平台的实用性,我们使用自动化的克隆跟踪和拾取工作流进行了一系列基因型,生成了一组克隆性低下IPSC线。通过多重碱基编辑和同时进行靶向转基因整合的碱基编辑生成的低免疫原性IPSC系列保留了多能性,并在区别为治疗细胞产物时表现出预期的人白细胞抗原(HLA)表型。因此,PIN点平台代表了一种安全有效的解决方案,可以通过与下游自动化兼容的新型单步过程同时执行多个基因组工程操作,从而提供了极大地简化同种异体IPSC衍生细胞疗法的开发的机会。
