功率激光源因其独特的功能和多功能性,在国防和太空应用中变得越来越重要。在国防方面,这些激光器为瞄准和消除导弹、无人机和其他空中物体等威胁提供了精确有效的解决方案。激光系统还可以破坏敌方通信和电子系统,在战场上提供显著的战术优势。在太空中,高功率激光器有可能彻底改变卫星保护、空间碎片清除和推进系统,为探索和防御开辟新的领域。在国防方面,功率激光源被视为传统防空系统(如导弹)的经济有效替代品,特别是用于对抗无人机 (UAV)。随着无人机变得越来越普遍和便宜,使用昂贵的导弹进行拦截带来了财务挑战。虽然已经开发了射频 (RF) 干扰等软杀伤解决方案,但激光和微波等定向能武器 (DEW) 可以更有效地防御无人机和高超音速导弹等新兴威胁。同样,在太空应用中,功率激光源正在成为 RF 通信系统的替代品或补充。地对空和空对空通信系统正在通过激光技术得到增强,有望提高性能和可靠性。功率激光源的进步推动了能够有效对抗小型无人机、简易爆炸装置 (IED) 和其他类似威胁的系统的发展,使其成为短程防空系统的关键组成部分。展望未来,重点是增强可扩展性以实现
摘要。空间系统必须处理由空间和地面传感器收集的大量时空地球和空间观测数据。尽管通信中存在数据延迟,但数据收集速度非常快,并且建立了复杂的地面站网络来收集和存档遥测数据。地面部分接收到的数据可以提供给最终用户。除了存档数据之外,可用数据还为数据分析提供了机会,可以支持决策过程或为目标需求提供新的见解。不幸的是,对于从业者来说,识别空间领域数据分析的潜力和挑战并不容易。在本文中,我们反思并综合了现有文献的发现,并为在空间系统环境中建立和应用数据分析提供了综合概述。为此,我们首先介绍空间系统中采用的流程,并描述数据科学和机器学习过程。最后,我们确定了可以映射到数据分析问题的关键问题。
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
i) 一种适用于通用 n 级量子系统的具有普遍有效性的无坐标算法;ii) 当量子发散函数(量子相对熵)满足数据处理不等式(DPI)时,则得到的量子度量满足 MP。
摘要 迄今为止研究的太空电梯主要是爬升式,即用缆绳连接地面和空间站,爬升器沿着缆绳上升和下降来运送有效载荷。然而,这种类型的系统存在一些问题,例如难以为爬升器提供能量,并且由于运行过程中缆绳和爬升器车轮的磨损,使用寿命较短。为了避免这些问题,在本研究中,我们研究了一种新型的配重式太空电梯。该系统由两根缆绳组成:一根承受施加在结构上的张力的导向缆绳和一根连接两个吊舱的移动缆绳,吊舱两端各一根,连接到空间站的驱动轮上,通过驱动车轮来运送吊舱中的有效载荷。在本研究中,我们利用我们小组开发的点质量缆绳模型分析了在空间站和地面之间应用配重式缆绳时的缆绳动力学,并计算了实际运行所需的能量。因此,当在火星重心(海拔 3,900 公里)和地面之间使用平衡型,而在高于该高度使用爬升型时,该系统消耗的能量比传统的爬升型太空电梯要少。关键词:空间科学、空间技术、太空电梯命名法
本研究设计并数值研究了一个新的热控制系统,用于用于航天器系统光学有效载荷的检测器。系统使用热电冷却器(TEC)作为维护冷手指在所需的设定点保持探测器温度的活性元件,使其在整个操作过程中保持在所需的范围内。该系统没有使用任何热管网络,而是使用附着在TEC热侧的辐射器将热负载耗散到环境空间环境中。使用有效属性的系统级建模用于对TEC的性能进行建模,而无需对任何内部复杂的几何形状进行建模。与温度相关的电流轮廓用作TEC的输入条件,因此TEC仅消耗所需的外部功率。研究了散热器的TEC设定点和几何参数的效果,并观察到,通过使用较大的设定点或具有较大尺寸的散热器,获得了功耗或提高性能系数的大幅度降低。该系统将进一步研究不同的热载荷和占空比(在100分钟的轨道周期内高达50%),以评估其在不同操作条件下的功效。还研究了该系统的连续操作周期,可以观察到,连续循环之间的循环误差最终将其变为零至零,因此表明在整个系统的整个生命中,都满足了连续的循环的温度控制要求。
与地面数据中心相比,轨道数据中心具有多项基本优势,尤其是在规模达到 GW 级时。通过使用廉价的太阳能,可以显著节省运营成本,而不受下文讨论的地面太阳能发电场的限制。轨道数据中心可以利用太空中的被动辐射冷却来直接实现低冷却剂温度,从而降低冷却成本。或许最重要的是,它们可以几乎无限地扩展,而不受地球上面临的物理或许可限制,使用模块化快速部署。所有这些都将对环境产生净效益——欧盟委员会最近的一项研究得出结论,轨道数据中心将显著减少电网电力产生的温室气体排放,并消除用于冷却的淡水使用。3
