太空飞行相关神经眼综合征 (SANS) 是太空飞行最大的生理障碍之一,需要对未来的行星任务进行评估和缓解。由于太空飞行环境是临床受限的环境,本研究的目的是使用在宇航员 SANS 光学相干断层扫描 (OCT) 图像上训练和验证的机器学习模型提供 SANS 的自动早期检测和预测。在本研究中,我们提出了一个轻量级卷积神经网络 (CNN),它结合了 EffficientNet 编码器,用于从 OCT 图像中检测 SANS,名为“SANS-CNN”。我们使用 6303 张 OCTB 扫描图像进行训练/验证(80%/20% 分割),并使用 945 张 SANS 图像进行测试,结合地面图像和宇航员 SANS 图像进行测试和验证。使用 NASA 标记的 SANS 图像对 SANS-CNN 进行了验证,以评估准确度、特异性和敏感性。为了评估真实世界的结果,还在这个数据集上采用了两种最先进的预训练架构。我们使用 GRAD-CAM 来可视化中间层的激活图,以测试 SANS-CNN 预测的可解释性。SANS-CNN 在测试集上的准确度为 84.2%,特异性为 85.6%,敏感性为 82.8%,F1 分数为 84.1%。此外,SANS-CNN 的准确度分别比另外两种最先进的预训练架构 ResNet50-v2 和 MobileNet-v2 高出 21.4% 和 13.1%。我们还应用两种类激活图技术来可视化模型感知到的关键 SANS 特征。 SANS-CNN 代表一种使用真实宇航员 OCT 图像进行训练和验证的 CNN 模型,能够快速有效地预测在临床和计算资源极其有限的地球轨道以外的太空飞行任务中出现的类似 SANS 的情况。
•技术出版物。完成的研究或重大研究阶段的报告介绍了NASA计划的结果,并包括广泛的数据或理论分析。包括大量的科学和技术数据的汇编以及被认为具有持续参考价值的信息。NASA的同行评审正式专业论文的对应物,但对手稿的长度和图形演示范围的限制较小。•技术备忘录。初步或专业兴趣的科学和技术发现,例如,快速发布报告,工作论文和书目包含最少注释的书目。不包含广泛的分析。•承包商报告。NASA赞助的承包商和受赠人的科学和技术发现。
孩子们喜欢太空探索,但他们不一定知道火箭和航天器实际上是如何工作的。孩子们可以根据物理学使用以太空为主题的游戏,以了解有关金属圆柱体如何充满推进剂移动和在太空中相互作用的方式,同时仍然很开心。我们谈论我们的示例视频,重点关注儿童太空迷,以帮助他们开始。我们使用当前在稳定版本中可用的游戏,首先从基本概念2D游戏(例如Simpleerockets)开始,然后再使用Space -Flight Simulator(也是2D)。从那里,我们在Simpleerockets 2中提供了发展到3D运动的示例,现在称为Juno:New Origins,Kerbal Space Program和Kerbal Space Program的新版本2。我们将介绍如何教孩子Delta-V和特定冲动等概念。我们的目标是帮助孩子和老师从诸如亚轨道轨迹等简单概念和轨道上发展,再到火箭舞台,轨道转移,会合,登陆,降落以及最终的更先进的概念,最终,在跨层次的trips上获得的资源保护和效率。
其次,本研究的主要重要发现是,当前航空设计组织安全指南与运营商安全风险管理指南之间存在差距(字面意思)。缺乏沟通意味着运营商无法尽可能有效地管理其安全风险。论文认为亚轨道领域应该注意,因为大多数飞行器都是基于飞机设计的,因此亚轨道运营商无疑将应用航空或商业空间领域的“最佳实践”。两者都不合适或有效。
商业人类太空飞行公司的出现正在改变范式,并旨在使私人公民,研究人员和政府宇航员的旅游业和研究目的的空间民主化。当前的人类航天行业又小而多样化 - 车辆系统的范围从空间平面到胶囊。公司不仅通过太空飞行技术进行创新,还通过制造能力,地面运营,培训计划等创新。美国在尚处于起步阶段的商业人类太空飞行和行业中的领先地位是一家创新的灯塔。当前的人类太空飞行的监管环境正在鼓励创新和增长,而没有损害安全性的联邦航空管理局(FAA)商业空间运输办公室(AST)调节商业空间运营以保护公共安全和财产,目前拥有前配置安全记录。这包括涵盖发射和着陆操作许可的规则,以及对太空港的建立的治理。Virgin Galactic在其许可过程中与FAA紧密合作,并在商业太空飞行运营期间继续这样做。作为我们业务的基础,VG的首要任务是我们的机组人员和太空飞行参与者(SFP)的安全。
[1] 陈善广 , 陈金盾 , 姜国华 , 等 .我国载人航天成就与空间 站建设 .航天医学与医学工程 , 2012, 25: 391-6 [2] 唐琳 .中国空间站完成在轨建造并取得一系列重大进 展 .科学新闻 , 2023, 25: 11 [3] 肖毅 , 陈晓萍 , 许潇丹 , 等 .空间脑科学研究的回顾与展 望 .中国科学 : 生命科学 , 2024, 54: 325-37 [4] 王跃 , 陈善广 , 吴斌 , 等 .长期空间飞行任务中航天员出 现的心理问题 .心理技术与应用 , 2013, 1: 40-5 [5] 陈善广 , 王春慧 , 陈晓萍 , 等 .长期空间飞行中人的作业 能力变化特性研究 .航天医学与医学工程 , 2015, 28: 1-10 [6] 凌树宽 , 李玉恒 , 钟国徽 , 等 .机体对重力的感应及机制 .生命科学 , 2015, 27: 316-21 [7] 范媛媛 , 厉建伟 , 邢文娟 , 等 .航天脑科学研究进展 .生 命科学 , 2022, 34: 719-31 [8] 梁小弟 , 刘志臻 , 陈现云 , 等 .生命中不能承受之轻 —— 微重力条件下生物昼夜节律的变化研究 .生命科学 , 2015, 27: 1433-40 [9] 邓子宣 , Papukashvili D, Rcheulishvili N, 等 .失重 / 模拟 失重对中枢神经系统影响的研究进展 .航天医学与医 学工程 , 2019, 32: 89-94 [10] Tays GD, Hupfeld KE, McGregor HR, et al.The effects of long duration spaceflight on sensorimotor control and cognition.Front Neural Circuits, 2021, 15: 723504-18 [11] Mhatre SD, Iyer J, Puukila S, et al.Neuro-consequences of the spaceflight environment.Neurosci Biobehav Rev, 2022, 132: 908-35 [12] 陈善广 , 邓一兵 , 李莹辉 .航天医学工程学主要研究进 展与未来展望 .航天医学与医学工程 , 2018, 31: 79-89 [13] Moyer EL, Dumars PM, Sun GS, et al.Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).NPJ Microgravity, 2016, 2: 16002-9 [14] Mains R, Reynolds S, Associates M, et al.A researcher's guide to: rodent research [M].Rat maintenance in the research animal holding facility during the flight of space lab 3.Washington D.C.: National Aeronautics and Space Administration, 2015 [15] Fast T, Grindeland R, Kraft L, et al.Physiologist, 1985, 28: S187-8 [16] Ronca AE, Moyer EL, Talyansky Y, et al.Behavior of mice aboard the international space station.Sci Rep, 2019, 9: 4717 [17] Morey-Holton ER, Hill EL, Souza KA.Animals and spaceflight: from survival to understanding.J Musculoskelet Neuronal Interact, 2007, 7: 17-25 [18] 陈天 , 胡秦 , 石哲 , 等 .美国太空动物实验研究发展历程 .中国实验动物学报 , 2022, 30: 582-8 [19] 董李晋川 , 黄红 , 刘斌 , 等 .苏俄太空动物实验研究发展 历程 .中国实验动物学报 , 2022, 30: 557-67 [20] Beheshti A, Shirazi-Fard Y, Choi S, et al.Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform.J Vis Exp, 2019, 143: e58447- 58 [21] 姜宁 , 刘斌 , 张亦文 , 等 .欧日太空动物实验研究概况 .中国实验动物学报 , 2022, 30: 568-73 [22] Mao XW, Byrum S, Nishiyama NC, et al.Impact of
要在月球、地月轨道和火星上建立持续存在,就需要植物农业。种植植物既有心理上的好处,也有营养上的好处(Odeh 和 Guy,2017 年),长期以来一直被认为是人类长期太空探索成功的关键。几十年来,NASA 一直强调植物作为航天和行星生命支持系统组成部分的作用。迄今为止,大多数努力都致力于设计植物生长硬件、测试各种作物品种的生长以进行营养补充、研究植物分子对太空飞行环境的反应以及研究植物与微生物的相互作用(Barker 等人,2020 年;Basu 等人,2017 年;Bishop 等人,1997 年;Choi 等人,2019 年;Ferl 等人,2014 年;Foster 等人,2014 年;Johnson 等人,2017 年;Khodadad 等人,2020 年;Kwon 等人,2015 年;Leach 等人,2007 年;Paul 等人,2021 年,2017 年;Perchonok 等人,2012 年;Wheeler 等人,1996 年;Zhou 等人,2019 年)。虽然很少有人对用于太空飞行的作物进行基因改造,以增强植物活力、提高作物收获指数、生物强化作物或生产特定于太空飞行任务目标的原料(Graham 等人,2015 年),但转基因 (GE) 植物已广泛应用于太空飞行,以了解植物对太空飞行环境的分子反应。这种分子基础为植物适应太空飞行的代谢策略提供了关键见解,并为设计出适合在这种新环境中旺盛生长的植物奠定了基础。(Califar 等人,2020 年;Kiss 等人,2012 年;Nakashima 等人,2014 年;Paul 等人,2001 年,2017 年)。
NASA和FAA在商业亚轨道太空飞行方面也有牢固的现有关系,在实现其履行其快速促进有前途的太空探索,发现,发现以及通过次级航天测试通过次级探索空间交易的飞行技术来促进有前途的技术方面的使命时,NASA的飞行机会计划依赖FAA许可和法规。NASA的飞行机会计划也有。 。 提供了FAA赞助的安全启用技术的测试航班,特别是通过FAA的商业太空运输卓越中心。 最近,NASA和FAA商业太空运输办公室合作开发了用于在商业轨道航班上飞行NASA赞助的SpaceFlight参与者的框架,使工业和学术界的研究人员首次提议与NASA赞助的有效载荷一起飞行。 NASA还通过商业机组人员计划的下降计划(SUBC)与FAA合作就商业轨道上的太空飞行活动(SUBC)努力,以扩大NASA宇航员和其他NASANASA的飞行机会计划也有。。提供了FAA赞助的安全启用技术的测试航班,特别是通过FAA的商业太空运输卓越中心。最近,NASA和FAA商业太空运输办公室合作开发了用于在商业轨道航班上飞行NASA赞助的SpaceFlight参与者的框架,使工业和学术界的研究人员首次提议与NASA赞助的有效载荷一起飞行。NASA还通过商业机组人员计划的下降计划(SUBC)与FAA合作就商业轨道上的太空飞行活动(SUBC)努力,以扩大NASA宇航员和其他NASA
• Progress 79P Launch/Dock • SpaceX Crew-2 Undock/Landing • SpaceX Crew-3 Launch/Dock • Northrop Grumman CRS-16 Unberth • Russian Flight 6R (RS Node Module) Launch/Dock • SpaceX CRS-24 Launch/Dock • U.S. EVA #78 (SASA R&R) • Soyuz 66S 12-Day (Spaceflight Participant Mission) • RS EVA #51•SPACEX CRS-24撤消•进步80p发射/码头•Northrop Grumman CRS-17发射/泊位•Axiom-1发射/码头(私人宇航员任务)•美国EVAS#79(IROSA Prep)(Irosa Prep)和#80(RBVM Jumper)(RBVM Jumper)
在登上火箭前往太空,甚至只是到达太空边缘之前,FAA 要求乘客签署一份免责声明,承认已知的太空飞行风险。然而,航空航天医学专家认识到,与太空飞行相关的许多健康风险仍未得到充分了解,而且对此类飞行对未经训练的参与者的健康造成的医学后果的研究非常少。已知的医学风险因多种因素而异,包括太空飞行概况、飞行器配置、目的地和持续时间,以及乘客的既往疾病状况。经历微重力、高速和强重力的参与者可能会出现视力丧失、晕动病、平衡问题、失去意识和心血管并发症。FAA 和美国国家航空航天局 (NASA) 在 2012 年为旅游太空飞行参与者推荐了医疗筛查标准,但这些准则对为太空旅行者提供发射或住宿的公司没有约束力。