神户制钢所的前身铃木商店以“增进国家利益”为企业理念,致力于实现日本依赖进口的工业产品的国产化,并将这一理念传承给了本公司。神户制钢所以重工业领域的“日本工业独立”为使命,不仅在钢铁领域,还在铝、铜、机械、工程、建筑机械等行业推出了许多日本首批国产产品。二战结束后仅三个月,本公司就恢复了线材生产,为日本的早期复兴做出了贡献。1995年的阪神淡路大地震中,本公司遭受了巨大损失,神户工厂(现神户线材工厂)的高炉也遭到破坏。原本预计需要六个月才能修复的高炉,在短短两个半月内就修复完毕,成为神户市震后复兴的象征。自创业以来,神钢集团一直秉持“不遗余力地为社会做贡献”的精神,如今已成为神钢集团的核心价值,致力于通过技术、产品和服务实现可持续发展的社会。
癌症是主要的公共卫生问题,尽管癌症研究和治疗取得了重大进展,但癌症仍然是导致死亡的主要原因。[1] 诊断和治疗,或治疗过程以及继续或停止治疗的决定,通常使用不同的方法在不同的时间进行。近年来,治疗诊断学已成为一种同时识别和治疗癌症的有前途的方法。[2、3] 这有几个优点:首先,治疗诊断学可以直接针对癌细胞进行靶向治疗,同时保护健康组织。从而避免或最大限度地降低了传统治疗相关的副作用风险。其次,治疗诊断学可以为个体患者制定个性化的治疗计划,从而提高治疗的整体疗效。最后,治疗诊断学能够或多或少实时地监测治疗效果;这一事实确保了最有效的治疗,同时再次最大限度地降低了副作用的风险。五环三萜酸已被证明是合成高细胞毒性药物的极佳起始材料,同时对非恶性组织的细胞毒性明显较低。因此,由二乙酰化或三乙酰化的三萜、位于三萜远端位置的合适酰胺间隔物和罗丹明组成的结合物被证明是特别有前途的分子。[4-11]例如,
溶于电解质中的高活动嘴唇与Li金属阳极化学反应。 [9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。 [10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。 [11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。 [12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。 已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。 [13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。 [14]溶于电解质中的高活动嘴唇与Li金属阳极化学反应。[9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。[10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。[11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。[12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。[13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。[14]
SmartBeam IMRT:针对下一代描述和概述SmartBeam™IMRT(强度调节放射疗法)的癌症护理是A是一种最新的癌症治疗方法,它可以以非常有针对性的方式直接向癌细胞提供高剂量的辐射,远比传统放射疗法更为精确。SmartBeam IMRT涉及变化(或调节)辐射剂量的强度。它可以直接将较高的辐射剂量直接输送到癌细胞中,同时保留更多周围的健康组织。使用SmartBeam IMRT,非常小的强度的光束可以从不同角度针对肿瘤,以完全三维的方式攻击肿瘤。实际上,可以用2.5 x 5毫米像素的横梁传递Smartbeam IMRT(铅笔尖端的大小),每个剂量都有不同的剂量。临床研究表明,使用IMRT技术传递的较高剂量率正在提高局部肿瘤控制率。同时,通过限制健康组织的暴露,Smartbeam IMRT可以消除或降低不需要的放射治疗副作用的患病率。SmartBeam IMRT用于治疗包括大脑,乳房,头颈部,肝脏,肺,鼻咽,胰腺,胰腺,前列腺和子宫在内的器官中的肿瘤。smartbeam imrt的好处
COVID-19 是由严重急性呼吸综合征冠状病毒 (SARS-CoV-2) 引起的,该病毒正在全球传播。大多数感染者仅表现出轻微症状,但有些人会发展为病毒性肺炎、多器官衰竭和死亡。SARS-CoV-2 主要通过飞沫(由咳嗽、打喷嚏等引起)和污染物传播。减少 COVID-19 人际传播的唯一有效预防措施是保持社交距离。目前尚无针对该疾病的有效治疗方法或疫苗。冠状病毒(包括 SARS-CoV-2)的刺突 (S) 蛋白与其靶宿主细胞上的细胞受体相互作用 (Li et al. 2003)。值得注意的是,SARS-CoV-2 会感染胃肠道细胞 (Liang et al. 2020),腹泻是 COVID-19 的一个重要症状(但经常被忽视)。我们在此建议利用 SARS-CoV-2 的肠营养特性来制造针对 COVID-19 疾病的口服减毒活疫苗。我们认为减毒活病毒最初会感染肠道,刺激粘膜相关免疫系统,从而在初始免疫反应期间保护呼吸系统免受免疫反应造成的损害。减毒活病毒可以在社区中传播。这种无声传播可能会增强群体免疫力并打破传播链。
PIK3CA基因座经常在各种肿瘤范围内突变,编码可药的激酶P110 a。尽管这一目标显然有希望,但针对该目标的药物开发一直具有挑战性。大多数p110 A抑制剂都因缺乏同工型特异性城市而受到阻碍。即使是Alpelisib(例如Alpelisib),也显示了代谢不良的作用,尤其是高血糖和高胰岛素血症,其中2主要是由于pan-PI3K抑制作用抑制葡萄糖进口,这反过来促使胰岛素分泌。这种反活性反应不仅破坏了药物的效果,甚至会促进肿瘤的生长。3,如果抑制剂具有完全同种型的选择性,则这些代谢不良效应将得到缓解,因为相关PI3KS之间具有显着的功能冗余。最近的一份报告4表明,p110 a的高官能接合可以导致蛋白质降解在有限数量的表达突变p110 A的细胞系中,同时保留了野生型。while
迷走神经是身体和大脑之间的内感受中继。尽管迷走神经在摄食行为、能量代谢和认知功能中的作用已得到充分证实,但连接迷走神经和海马的复杂功能过程及其对学习和记忆动态的贡献仍然难以捉摸。在这里,我们研究了肠脑迷走神经轴是否以及如何在行为、功能、细胞和分子水平上促进海马的学习和记忆过程。我们的结果表明,迷走神经轴的完整性对于长期识别记忆至关重要,同时对其他形式的记忆也有保护作用。此外,通过结合多尺度方法,我们的研究结果表明肠脑迷走神经张力在扩大细胞内信号事件、基因表达、海马树突棘密度以及功能性长期可塑性 (LTD 和 LTP) 方面发挥着允许作用。这些结果强调了肠脑迷走神经轴在维持海马群的自发和稳态功能以及调节其学习和记忆功能方面的关键作用。总之,我们的研究全面了解了肠脑迷走神经轴在塑造时间依赖性海马学习和记忆动态方面的多方面参与。了解这种内感受性身体-大脑神经元通讯背后的机制可能为与认知衰退相关的疾病(包括神经退行性疾病)的新治疗方法铺平道路。
摘要:创造方法来控制药物在特定组织的活化同时又不伤害健康组织的能力仍然是一项重大挑战。外源性靶向特异性触发剂的施用有可能从抗体-药物偶联物 (ADC) 和笼状前药中无痕释放活性药物到肿瘤部位。我们开发了一种金属介导的键裂反应,该反应使用铂配合物 [K 2 PtCl 4 或顺铂 (CisPt)] 来活化药物。反应成功的关键是水促进的活化过程,该过程触发铂配合物的反应性。在这些条件下,戊炔酰基叔酰胺和 N-炔丙基在水体系中迅速脱笼。在细胞中,细胞毒药物 5-氟尿嘧啶 (5-FU) 和单甲基金铂 E (MMAE) 的受保护类似物被无毒量的铂盐部分激活。此外,在铂盐存在下,还对非内化 ADC 进行了脱嵌,该 ADC 采用戊炔酰基无痕连接子构建,该连接子具有三级酰胺保护的 MMAE,可在癌细胞中释放出细胞外药物。最后,在结直肠斑马鱼异种移植模型中,CisPt 介导的 5-FU 炔丙基衍生物的前药活化作用可显著缩小肿瘤大小。总体而言,我们的结果揭示了一种新的基于金属的可裂解反应,将铂配合物的应用范围扩展到催化和癌症治疗之外。
摘要:利用蛋白水解靶向嵌合体 (PROTAC) 来靶向蛋白质降解是当前药物发现领域中备受关注的一个领域。尽管已经证实 PROTAC 针对多种靶标具有高效性,但是迄今为止报道的大多数降解剂都表现出有限的内在组织选择性,并且不能区分不同类型的细胞。在这里,我们描述了一种在特定细胞类型中选择性降解蛋白质的策略。我们报告了一种曲妥珠单抗-PROTAC 偶联物 (Ab-PROTAC 3) 的设计和合成,其中 E3 连接酶指导的降解剂活性被抗体接头所包围,该接头可以在抗体-PROTAC 内化后水解,释放活性 PROTAC 并诱导催化蛋白质降解。我们表明,3 仅在 HER2 阳性乳腺癌细胞系中选择性靶向降解含溴结构域蛋白 4 (BRD4),同时保留 HER2 阴性细胞。使用活细胞共聚焦显微镜,我们展示了偶联物在 HER2 阳性细胞中的内化和溶酶体运输,导致活性 PROTAC 释放,其数量足以诱导强效 BRD4 降解。这些研究证明了组织特异性 BRD4 降解的概念验证,克服了 PROTAC 选择性的局限性,具有应用于新靶点的巨大潜力。
尽管PARP1/2抑制剂(PARPI)的临床益处是FDA批准用于治疗某些BRCA-突变癌的临床益处,但许多患者可以实现不完全的疾病控制和发展性疾病。是出于这种临床需求的激励,我们利用了CRISPR目标发现筛选平台来确定与PARP抑制剂治疗协同作用的新目标。通过在BRCA-突变剂和野生型细胞中进行平行筛选,我们将DNA聚合酶β(POLB)鉴定为一个新靶标,当与PARPI结合使用时,可以选择地杀死BRCA突变线,同时放大正常细胞。POLB敲除和使用BRCA1和BRCA2突变的同基因细胞系的cDNA救援实验进一步证明,PORB的催化活性对于与PARPI合成的致死性是必需的。最引人注目的是,POLB敲除与亚治疗剂量的PARPI结合,导致了深层肿瘤的消退,并阻止了体内肿瘤再生,即使停止药物治疗。从机械上讲,polb敲除与单链DNA断裂增加,多-ADP-核糖聚合物的积累,细胞周期停滞和凋亡有关。在一起,这些结果表明,POLB抑制剂与PARPI结合使用,有可能推动深层耐用的反应,为BRCA1/2突变的癌症患者提供了一种新型的治疗选择。