动物神经系统在处理感觉输入方面非常有效。神经形态计算范式的目的是针对神经网络计算的硬件实施,以支持用于构建脑启发的计算系统的新颖解决方案。在这里,我们从果实幼虫的神经系统中的感觉处理中汲取灵感。具有<200个神经元和<1.000的强烈有限的计算资源,幼虫嗅觉途径采用基本计算来转变外围的广泛调节的益人的输入,成为中央大脑中良好的稀疏代码。我们展示了这种方法如何使我们能够在尖峰神经网络中实现刺激模式的稀疏编码和提高的可分离性,并在混合体信号实时神经形态硬件上通过软件仿真和硬件仿真验证。我们验证反馈抑制是在神经元种群中支持空间结构域稀疏性的主要基础,而尖峰频率适应和反馈抑制的组合决定了时间域中的稀疏性。我们的例外表明,在神经形态硬件上有效地实现了如此大小的生物学上现实的神经网络,可以实现并行处理并有效地编码在全时间分辨率下进行感官。
状态准备算法可分为精确算法 [2, 3, 4, 5, 6] 和近似算法 [7, 8, 9, 10]。本文主要研究精确状态准备算法。精确状态准备可分为两类:i)准备量子态的算法,将每个模式逐一加载到量子叠加中,计算成本与振幅和量子比特的数量有关 [2, 5, 6];ii)使用量子态分解来准备状态的算法,计算成本与所需状态的量子比特数呈指数关系 [11, 4, 12]。与量子比特数和输入模式数有关且计算成本呈指数关系的算法效率不高,只能用于生成具有少量量子比特的量子态。计算成本为 O(nM)的算法需要大量 CNOT,不适合 NISQ 设备。本文旨在开发一种算法,将稀疏数据传输到量子设备,经典计算机构建量子电路的计算成本为 O(Mlog(M)+ nM),与文献中以前的算法相比,该算法生成的量子电路具有较少的 CNOT 算子数量。为了实现这一目标,我们优化了连续值 QRAM [6],定义了 D 中数据呈现的部分顺序。与最近在 [13] 中提出的稀疏量子态准备算法相比,后者使用经典计算机构建量子电路的计算成本为 O(M2 + nM),我们的方法在双稀疏情况下(关于振幅和状态中 1 的数量的稀疏)生成的电路具有较少的 CNOT 门数量。这项工作的其余部分分为 5 个部分。第 2 节介绍了这项工作中使用的量子算子。第 3 节介绍了 CV-QRAM 算法 [6]。第 4 节介绍了本文提出的 CVO-QRAM 算法。第 5 节介绍了实验结果并展示了所提算法所取得的改进。最后,第 6 节是结论。
背景:在运动成像(MI)脑电图(EEG)记录以及在脑计算机界面(BCI)应用的MI分类中,常见的空间模式(CSP)已被广泛用于特征外观。BCI通常需要相对较长的脑电图数据来可靠的分类培训。更具体地,在使用一般空间模式进行特征提取之前,使用两个不同类别的训练词典来构造复合词典矩阵,并且在滤波器带中的测试样品的表示形式估计为字典矩阵中列的线性组合。新方法:减轻频率带之间的稀疏小样本(SS)问题。我们为BCI系统中的运动图像提出了一种新型的稀疏组过滤库模型(SGFB)。结果:我们通过基于对非零相关系数的类别表示残差来执行任务。此外,我们还在三个不同的时间窗口中使用约束过滤器频段执行关节稀疏优化,以在多任务学习框架中提取强大的CSP功能。为了验证我们的模型的有效性,我们对BCI竞争的公共EEG数据集进行了实验,以将其与其他竞争方法进行比较。与现有方法的比较:差异
疫苗接种产生了保护接受者免受传染病的直接利益,以及减少感染传播给他人的间接社会利益,通常称为群疫苗。这项研究研究了对疫苗接种的关注,即如果人们不接种疫苗,人们对感染他人的关注,在美国人口越来越少的地区进行疫苗接种。对2,490名美国人的全国代表性,纵向调查表明,亲社会关注对稀疏地区对流感的疫苗接种产生更大的积极影响,这是由一个地区的非众多人口地位,人口密度较低,城市土地面积较低的比例所判断。两次经验(总n = 800),一个预先注册的,提供了因果证据,表明人们关注亲社会的关注(与个人)关注社会密度相关的,以影响疫苗接种意图。特定的亲社会关注会导致对疫苗接种流感和Covid-19,但仅当社会密度较低时(与高高)时。调解的调解分析表明,在低密度条件下,引起亲社会关注的好处是由于一个人的疫苗接种对他人的疫苗接种的影响更大。从这个角度来看,公共卫生通信可能会通过强调稀疏环境中疫苗接种的亲社会方面而获得更多的好处。
动机:脑成像遗传学研究基因型数据(例如单核多态性(SNP)和成像定量性状(QTS))之间的复杂关联。神经退行性疾病通常表现出多样性和异质性,起源于该疾病,不同的诊断组可能会带有不同的成像QT,SNP及其相互作用。稀疏的规范相关分析(SCCA)被广泛用于识别双变量基因型 - 表型关联。然而,大多数现有的SCCA方法是无监督的,导致无法识别特定于诊断的基因型 - 表型关联。结果:在本文中,我们提出了一种名为MT – SCCALR的新联合多任务学习方法,该方法吸收了SCCA和逻辑回归的优点。MT – SCCALR共同学习多个任务的基因型 - 表型关联,每个任务都集中在识别一种诊断特定的基因型 - 表型模式上。同时,MT – SCCALR不仅可以为每个诊断组选择相关的SNP和成像QT,而且还允许将多个诊断组共享的SNP选择。我们得出了一种有效的优化算法,该算法可以保证其转化为局部最佳限度。与两种最先进的方法相比,MT – SCCALR产生更好或类似的规范相关系数和分类性能。此外,它拥有比竞争对手更好的判别规范权重模式。可用性和实施:该软件可在https://github.com/dulei323/mtsccalr上公开获得。这证明了MTSCCAR在识别诊断性异构基因型 - 表型模式方面的功能和能力,这将有助于了解脑疾病的病理生理学。联系人:dulei@nwpu.edu.cn或li.shen@pennmedicine.upenn.edu补充信息:补充数据可在Bioineformatics在线获得。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是由此预印本的版权持有者于 2020 年 1 月 15 日发布的。 ;https://doi.org/10.1101/2020.01.14.906537 doi:bioRxiv 预印本
能够记录和传输生物信号的可穿戴电子设备可以提供便捷且普遍的健康监测。典型的脑电图记录会产生大量数据。传统的压缩方法无法将数据压缩到奈奎斯特速率以下,因此即使压缩后数据量仍然很大。这需要大量存储空间,因此传输时间也较长。压缩感知提出了解决这个问题的方法,并提供了一种将数据压缩到奈奎斯特速率以下的方法。本文提出基于双时间稀疏性的重建算法来恢复压缩采样的脑电图数据。通过使用schattern-p范数修改基于双时间稀疏性的重建算法并在处理前对脑电图数据进行去相关变换,进一步改善了结果。所提出的改进双时间稀疏性的重建算法在SNDR和NMSE方面优于基于块稀疏贝叶斯学习和Rackness的压缩感知算法。仿真结果进一步表明,所提出的算法具有更好的收敛速度和更短的执行时间。
虽然通过正则化程序进行特征选择的问题在监督学习环境中引起了极大关注,并在过去二十年中产生了大量文献,但直到很晚且相对较新的时候,它才有效地出现在无监督框架中。第一种方法是基于模型的,这些方法自然适合包括套索(L 1)和相关惩罚,并且可以引用 [1] 来了解 L 1 惩罚的 EM 程序(混合由方差相等的高斯分布组成)或 [2] 来详细回顾基于模型的高维数据聚类。在更通用的框架中,没有对底层分布做出任何假设,在 [3] 中引入了具有 L 1 惩罚的稀疏 k 均值算法,后来扩展到每个聚类内的特征选择,并通过一致性结果得到加强,[4] [5] [6]。我们还要提到,最近在 [7] 中引入了稀疏 k 均值算法对重叠变量组的推广。话虽如此,上面引用的所有方法本质上都是为数值数据设计的,而真实数据通常由数值和分类特征组成。上面的一些作者触及了分类特征的问题,提到了使用虚拟变量进行转换使其数字化的可能性。但是,这个处理步骤并不是那么直接,因为零一向量上的欧几里得距离并不特别适合与数值变量上的欧几里得距离混合。其他作者
2是一种鲁棒性,为了允许不同的收缩程度,我们还尝试了该模型的扩展版本,其中非零的coe cients是从两个高斯分布的混合物中绘制出的具有高方差和低方差的混合物,而不是一个。我们不基于此替代规格报告结果,因为它们与基线相似。