高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
基于事件的传感是一种相对较新的成像模态,可实现低潜伏期,低功率,高时间分解和高动态范围采集。这些支持使其成为边缘应用和在高动态范围环境中的高度可取的传感器。截至今天,大多数基于事件的传感器都是单色的(灰度),在单个通道中捕获了Visi-ble上广泛光谱范围的光。在本文中,我们介绍了穆斯特朗事件并研究了它们的优势。尤其是我们在可见范围内和近红外范围内考虑多个频段,并探索与单色事件和用于面部检测任务的传统多光谱成像相比的潜力。我们进一步发布了第一个大型双峰面检测数据集,其中包含RGB视频及其模拟色彩事件,N-Mobiface和N-Youtubefaces,以及带有多光谱视频和事件的较小数据集,N-SpectralFace。与常规多频谱图像的早期融合相比,多阶段事件的早期融合可显着改善面部检测性能。此结果表明,相对于灰度等效物,多光谱事件比传统的多光谱图像具有相对有用的有关场景的信息。据我们所知,我们提出的方法是关于多光谱事件的首次探索性研究,特别是包括近红外数据。
在外部束放射治疗期间,患者暴露于次级辐射源,导致具有潜在的长期不良影响的非领域剂量。了解光子和电子能谱对于评估现代放射疗法的次要效应至关重要。这项研究旨在评估几个小放射治疗场的光子和电子功能光谱和平均能量以及范围边缘的平均能量。该研究使用了三个常用的线性加速器生成的6 mV光子光束,使用了国际原子能局(IAEA)相空间文件来产生小型和标准场。在三个线性加速器和预先固定的6 mV光谱的多个深度和轴距离处计算平均光子和电子能。研究发现,光子功能光谱在很大程度上取决于空间位置,并且随着深度,距离距离,范围距离,范围大小和Linac模型的函数的显着变化。此外,电子的行为是深度依赖性的,在该领域的边缘之外,在该领域,表面附近的平均电子能量大于内部区域,尤其是在小型领域,导致表面剂量增强。
Deeptrees项目提供了用于培训,微调和部署深度学习模型的工具,以使用德国的数字矫正图计划(DOP)以20 cm的分辨率从德国的数字矫正图计划(DOP)中使用公共访问的图像进行诸如Tree Crown分割,树状特征检测和树种分类。这些DOP图像是根据“ Amtliches popographis-kartographissches Informationssystems”(AKTIS)指南进行标准化的,以确保其长期使用的可靠性和一致性[2]。利用深层python软件包,我们成功地绘制了萨克森州(137,293,260棵树)和萨克森 - 安哈尔特(81,449,641棵树)的218,742,901棵树,展示了该工具在森林,Urban和乡村环境中的可伸缩性(图1)。这些数据集为市政当局和机构提供了宝贵的见解,以管理街道树木,监测城市绿化和评估森林健康,从而实现更明智的决策和可持续的管理实践。
摘要:光谱计算机断层扫描标志着医学成像的革命性进步,提供了组织表征和诊断准确性的显着改善。使用双能X射线技术,该方法根据其原子数和电子密度区分材料。频谱成像可从多个能级中获取数据,从而更详细地描绘组织结构,并增强对各种病理状况的识别和理解。与传统成像不同的是依赖于单个能级的传统成像,该方法产生的图像具有多样的对比度,从而可以区分标准扫描中可能看起来相似的组织。本评论探讨了有关光谱计算机断层扫描的发表研究和研究的各种集合,利用了同行评审的期刊和学术教科书,专门研究双能量成像系统,探测器创新和临床应用。获得了所获得的见解,以提供有关此成像技术的基本原理,技术进步和临床实用性的全面概述。强大的搜索策略和明确定义的纳入标准可确保选择高质量的相关资源,以支持本综述中得出的结论。本文旨在对光谱计算机断层扫描的基本原理,技术创新和临床应用进行全面概述。这种能力对于检测和分析各种病理问题(包括肿瘤,血管异常和退化性疾病)特别有价值。2。检测器技术的最新进步显着提高了光谱成像系统的灵敏度和分辨率。这些改进会导致更清晰,更精确的图像,并减少噪声。高级图像重建算法的结合具有进一步的图像质量,从而更好地可视化复杂的解剖学特征,对于准确的诊断和有效的治疗计划至关重要。此外,增强的软件功能现在可以详细介绍组织特性的定量分析,例如衰减系数,有助于评估组织组成并区分良性和恶性生长。光谱计算机断层扫描中的进步代表了医学成像中的关键演变,从而显着提高了诊断评估的准确性和细节。利用双能系统和创新技术,可以实现先进的组织表征,促进知情的临床决策。其广泛的临床应用突出了其在各种专业中的重要性,从而提高了有效诊断和管理各种疾病的能力。随着研究和技术的继续发展,它将在实现更好的健康成果中发挥越来越重要的作用。关键字:计算机断层扫描,光谱成像,组织表征,双能X射线系统1。引言自从五十年前作为一种非侵入性诊断方法首次亮相以来,计算机断层扫描(CT)经历了重大发展。现代CT研究的关键领域是光谱成像,它利用多色X射线的能量信息来增强组织表征。虽然Spectral CT源于早期CT技术,但由于技术的改进,其临床采用率在过去的十年中已大大增长,这使其实际上更可行(Krauss,B。,2015年)。ct数是由X射线的衰减确定的,X射线受材料的质量密度和有效原子数的影响。光谱CT使用数学技术分别计算质量密度和有效原子数,从而收集多个能级的数据。双能计算机断层扫描(DECT)的出现具有显着高级的CT技术,可以解决组织表征的先前局限性,而新的光子计数检测系统为多能成像的进一步改善提供了潜力(Gutjahr,R。,R。,2016年)。本文的目的是对光谱计算机断层扫描的核心原理,技术进步和临床应用进行深入探索。方法本综述研究了一系列关于光谱计算机断层扫描的已发表的研究和研究,这些研究来自同行评审的期刊和学术教科书,这些期刊和学术教科书着眼于双能CT系统,探测器技术,
摘要:通过控制子波长量表中的光场,Metasurfaces实现了小型化和频谱成像系统整合的新方法。元整形支持连续体(Quasi-BICS)中的准结合状态可以通过更改结构参数来控制质量因子和光谱响应。在这项工作中,我们提出了一个超紧凑的多光谱成像设备,从而通过支持准BIC的元原子阵列来实现光谱调制。设计的元原子阵列可以在各种波长上充当过滤器,从而使设备能够具有较大的操作范围和具有良好光谱分辨率的高保真光谱重建。由BIC MetaSurfaces组成的微光谱仪也可以用作成像像素来通过定期布置实现计算成像光谱,从而成功地在不同的通道中成功解析了具有空间别名的图像。此光谱仪设备可以以低成本以快速对象识别和适当的空间光谱分辨率来满足市场需求。
近年来,自主导航变得越来越流行。但是,大多数现有的方法在公路导航方面有效,并利用了主动传感器(例如LIDAR)。本文使用Passive传感器,特别是长波(LW)高光谱(HSI)的遍历性估计,重点介绍了自主越野导航。我们提出了一种方法,用于选择一部分高光谱带,该方法通过设计一个最小的传感器设计带选择模块,该模块设计一个最小的传感器,该模块设计了一个最小的传感器,该模块可以测量稀疏采样的光谱带,同时共同训练语义段网络网络,以进行遍历性估计。使用我们的LW HSI数据集在包括森林,沙漠,雪,池塘和开放式田野的各种越野场景中证明了我们方法的有效性。我们的数据集包括在各种天气条件下白天和夜间收集的图像,包括具有广泛障碍的具有挑战性的场景。使用我们的方法,我们学习了所有HSI频段中的一个小子集(2%),这些子频段可以在利用所有高光谱带时获得竞争性或更好的遍历性估计精度。仅使用5个频段,我们的方法能够实现平均类别的效果,该级别仅比使用完整的256波段HSI低1.3%,而仅比使用250频段HSI实现的效果仅比使用了0.1%,这证明了我们方法的成功。
© 作者 (2021)。由牛津大学出版社代表《大脑担保人》出版。这是一篇开放获取文章,根据知识共享署名许可条款分发 (http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用、分发和复制,前提是正确引用原始作品。
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
摘要。我们证明了整个欧几里得空间上(各向异性的)舒宾仪的定量光谱不平等,因此,从相关的光谱子空间中的功能与有限的能量间隔相关的函数将其在整个空间上与合适子集的L 2-纳米在整个空间上的l 2-相关。我们估计值的一个特定特征是,将这些L 2 -norms相关的常数在整个空间的相应子集的几何参数中非常明确,这可能会在实质性上稀疏,甚至可能具有有限的度量。这扩展了J. Martin最近获得的结果,在谐波振荡器的特殊情况下,A。Dicke,I。Veselić和第二作者获得了结果。我们将结果应用于相关的抛物线方程的无控制性,以及与作用于R d×T d的(变性)Baouendi-Grushin算子相关的结果。