摘要 — 自动检测和去除脑电图 (EEG) 异常值对于设计强大的脑机接口 (BCI) 至关重要。在本文中,我们提出了一种新的异常值检测方法,该方法适用于样本协方差矩阵 (SCM) 的黎曼流形。现有的异常值检测方法存在错误地将某些样本拒绝为异常值的风险,即使没有异常值,因为检测基于参考矩阵和阈值。为了解决这一限制,我们的方法黎曼谱聚类 (RiSC) 基于提出的相似性度量将 SCM 聚类为非异常值和异常值,从而检测异常值。这考虑了空间的黎曼几何,并放大了非异常值簇内的相似性并削弱了非异常值和异常值簇之间的相似性,而不是设置阈值。为了评估 RiSC 的性能,我们生成了受不同强度和数量的异常值污染的人工 EEG 数据集。比较 RiSC 与现有异常值检测方法之间的 Hit-False (HF) 差异,证实 RiSC 可以显著更好地检测异常值 (p < 0.001)。特别是,对于异常值污染最严重的数据集,RiSC 对 HF 差异的改善最大。
高光谱成像为分析人工生态系统中地上植物的特征提供了强大的工具,能够提供涵盖不同波长的丰富光谱信息。本研究提出了一种高效的高光谱数据分割和后续数据分析流程,通过使用稀疏混合尺度卷积神经网络集成,最大限度地减少了用户注释的需求。分割过程利用集成的多样性,以最少的标记数据实现高精度,从而减少了劳动密集型的注释工作。为了进一步增强稳健性,我们结合了图像对齐技术来解决数据集的空间变异性问题。下游分析侧重于利用分割数据处理光谱数据,从而实现植物健康状况的监测。该方法为光谱分割提供了一种可扩展的解决方案,并有助于在复杂受控环境中对植物状况进行切实可行的洞察。我们的研究结果证明了将先进的机器学习技术与高光谱分析相结合,可以实现高通量植物监测。
2025-02-13本出版物的自算帖子印刷版可在Linköping大学机构存储库(Diva)上获得:https://urn.kb.se/resolve?urn= urn= urn= urn:se:se:liu:diva-2097752
Joao Resende,David Fuard,Delphine Le Cunff,Jean-Herve Tortai,Bernard Pelissier。Hy-hy-hy-Bridations和XPS的能量损失光谱用于带隙和光学常数测定sion薄膜中。材料化学与物理学,2020,259,pp.124000。10.1016/j.matchemphys.2020.124000。hal-03017737
在听觉感知过程中,神经振荡已知会与声学动态同步,但它们在听觉信息处理中的作用仍不清楚。作为一种可以通过声学参数化的复杂时间结构,音乐特别适合解决这个问题。在一项针对人类参与者的行为和脑电图联合实验中,我们研究了刺激的时间(声学动态)和非时间(旋律频谱复杂性)维度对神经同步的相对贡献,神经同步是一种刺激-大脑耦合现象,在这里操作上定义为声学和神经动态之间的时间相干性。我们首先强调低频神经振荡会稳健地与复杂的声学时间调制同步,这强调了这种耦合机制的细粒度性质。我们还揭示了增强音高、和声和音高变化方面的旋律频谱复杂性会增加神经同步。重要的是,这种操作增强了 theta(5 Hz)范围内的活动,这是一种与旋律音符速率无关的频率选择性效应,可能反映了所涉及的神经过程的内部时间限制。此外,虽然情绪唤醒评级和神经同步都受到频谱复杂性的正向调节,但未观察到唤醒和神经同步之间的直接关系。总体而言,这些结果表明,音乐的神经同步对听觉信息的频谱内容很敏感,并指示了听觉水平的处理,这应该与高阶情绪处理阶段区分开来。
©作者在欧洲放射学学会的独家许可下。2022 Open Access本文均在创意共享归因4.0国际许可下获得许可,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您适当地归功于原始作者(S)和来源,并提供了与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
对振动分子光谱的准确模拟在常规计算机上很昂贵。与电子结构问题相比,量子计算机的振动结构问题的研究较少。在这项工作中,我们准确地估算了量子量的量子,例如逻辑柜和量子门的数量,这些量子是在实体量子计算机上计算的振动结构所需的。我们的AP-PRACH基于量子相估计,并专注于耐断层的量子设备。除了通用化学化合物的渐近阶段外,我们还对模拟在振动结构计算中所需的量子资源进行了更详细的分析。杠杆嵌套的换向器,与先前的研究相比,我们对猪肉误差进行了深入的定量分析。最终,这项工作是分析振动结构模拟中潜在的量子优势的指南。
摘要。在气候模型中,雪反照率方案一般仅计算窄带或宽带反照率,这导致了显着的不确定性。在这里,我们介绍了基于规格固定的辐射变量(Valhalla 1.0版)的多功能反照率计算方法,以优化光谱雪反照率计算。对于这种操作,积雪吸收的能量是由雪(tartes)和光谱辐照模型的光谱反照率模型的两流射线传递来衡量的。该计算考虑了基于降雪的辐射转移的分析近似,就考虑了入射辐射的光谱特征和雪的操作特性。对于这种方法,计算了30个波长,称为扎点(TPS),并计算16个参考iranciance pro文件,以结合吸收的能量和参考辐照度。然后,将吸收能量的能量插值,每个波长在两个TPS之间具有足够的核函数,这些核函数源自辐射转移,以降雪和大气。我们表明,吸收能量计算的准确性主要取决于参考文献对模拟的辐照度的适应(对于宽带吸收能量的绝对差<1 w m-2的绝对差<1 w m-2,绝对差<0。005用于宽带反照率)。除了准确性和计算时间的性能外,该方法还适用于任何大气输入(宽带,窄带),并且很容易适应整合到全球或区域气候模型的辐射方案中。
几十年来,散射技术一直被广泛用于表征光学质量表面(即粗糙度远小于照明波长的表面)。散射光在许多领域都至关重要,例如,对于光学滤波器的最终性能、天文学和空间应用的先进光学系统或微电子学。对于所有这些应用,降低粗糙度和表面缺陷都是一个主要问题,而抛光技术的改进使得制造粗糙度低于几分之一纳米的表面成为可能。与此同时,测量技术也得到了发展,可以可靠地检测这些表面的特性,而光散射已被证明是一种非常有效、快速且非侵入性的方法,可以表征所有所需的参数。如今,角度分辨散射仪 [16-19] 可以在整个角度范围内以及从可见光到近红外的宽光谱范围内实现低于非吸收朗伯模式的 8 个十年的动态。
我们已经实施了一种针对高光谱大气发声测量的特定方法,即L1光谱的主要成分分析(PCA)用于检测极端事件。基于PCA方法的丰富经验,用于压缩和减少IASI L1C数据,专用算法和工具已开发出用于系统检测火灾,火山,污染羽毛和其他事件的系统检测,并实施了以-B,-B,-B,Traist in themal ins -coctor in the The Thermal(Traist)的处理(TRAIR)(TRAIR)(TIRRER RORAID)(TIRRER RIFARE)(TIRRER RORARE)(TIR)在短波长红外(SWIR)域中8。