抽象功能磁共振成像(fMRI)已被证明是非侵入性测量人脑活动的强大工具。然而,到目前为止,fMRI的时间分辨率相对有限。一个关键挑战是了解神经活动与从fMRI获得的血氧水平依赖性(BOLD)信号之间的关系,通常由血液动力学反应函数(HRF)建模。人力资源管理的时机在整个大脑和个人之间各不相同,使我们对基础神经过程的时机进行推断的能力感到困惑。在这里,我们表明静止状态fMRI信号包含有关HRF时间动力学的信息,这些信息可以利用,这些信息可以利用,以理解和表征皮质和皮层下区域的HRF时序变化。我们发现,在人类视觉皮层中,静息状态fMRI信号的频谱在快速与慢速HRF的体内之间存在显着不同。这些频谱差异也扩展到亚皮层,揭示了丘脑侧向核核中的血液中正时的明显更快。最终,我们的结果表明,HRF的时间特性会影响静止状态fMRI信号的光谱含量,并启用相对血液动力学响应时序的体素特征。此外,我们的结果表明,应谨慎使用静止状态fMRI光谱特性,因为fMRI频率含量的差异可能来自纯粹的血管起源。这一发现提供了对跨体素信号的时间特性的新见解,这对于准确的fMRI分析至关重要,并增强了快速fMRI识别和跟踪快速神经动力学的能力。
Antonia Gambacorta 1 , Jeffrey Piepmeier 1 , Mark Stephen 1 , Rachael Kroodsma 1 , Isaac Moradi 3 , Alexander Kotsakis 3 , Fabrizio Gambini 2 , Matt Fritts 1 , James Mackinnon 1 , Joseph Santanello 1 , John Blaisdell 4 , Robert Rosenberg 4 , Narges Shahroudi 3 , Yaping Zhou 2 , Priscilla Mohammed 7 , Victor Torres 1 , Dan Sullivan 1 , Ed Leong 1 , David Robles 1 , Jie Gong 1 , Ian Adams 1 , Paul Racette 1
本研究提出了一种对激光粉末融合的原位监测方法。使用标准的激光光学元件,在瞄准前扫描配置中获得了粉末床的同轴高分辨率多光谱图像。可以生成整个114×114 mm粉末床的连续概述图像,检测到直径低至20 µm的物体,最大偏移量为22-49 µm。通过从405 nm到850 nm的6个不同波长捕获图像来获得多光谱信息。与已建立方法的吸光度光谱相比,这允许在线确定粉末床的吸光度,最大偏差为2.5%。对于此方法的资格,已经在粉末表面和20种不同粉末的测试上进行射线追踪模拟。这些包括不同的颗粒大小,年龄和氧化粉末。
摘要。遥感技术的快速发展为进一步发展目前主要基于被动航空图像的全国测绘程序提供了有趣的可能性。特别是,我们假设多时相机载激光扫描 (ALS) 在地形测绘方面具有巨大的未被发现的潜力。在本研究中,首次测试了多时相多光谱 ALS 数据的自动变化检测。结果表明,直接比较不同日期的高度和强度数据可以揭示与郊区发展相关的微小变化。未来工作的主要挑战是将变化与地图制作中感兴趣的对象联系起来。为了在未来的测绘中有效利用多源遥感数据,我们还研究了卫星图像和地面数据补充多光谱 ALS 的潜力。开发并测试了一种从 Sentinel-2 卫星图像时间序列中进行连续变化监测的方法。最后,使用地面移动激光扫描获取高密度点云并自动将其分为四类。将结果与 ALS 数据进行比较,并讨论了不同数据源在未来地图更新过程中可能发挥的作用。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.13.4.044504]
识别基于间接观察到的过程的功能网络构成了神经科学或其他领域的反问题。对此类反问题的解决方案估算为第一步,该活动从脑电图或MEG数据中从功能网络中出现。这些脑电图或MEG估计是对功能性脑网络活动的直接反映,其时间分辨率是其他体内神经图像无法提供的。第二步估计了此类活动pseudodata的功能连通性,揭示了与所有认知和行为密切相关的振荡性脑网络。对此类MEG或EEG逆问题的模拟还揭示了由任何最新的反溶液确定的功能连接性的估计误差。我们揭示了估计误差的重要原因,该原因源自将任一个逆解决方案步骤的功能网络模型的错误指定。我们介绍了指定这种振荡性脑网络模型的隐藏高斯图形光谱(HIGGS)模型的贝叶斯识别。在人EEGα节律模拟中,以ROC性能为单位测得的估计错误在我们的HIGG逆溶液中不会超过2%,而最先进的方法中的估计误差则达到20%。猕猴同时发生的EEG/ECOG记录为我们的结果提供了实验性确认,根据Riemannian距离,其一致性比最新的方法高的1/3倍。
摘要:机载高光谱成像已被证明是一种有效的手段,可以为生物物理变量的检索提供新的见解。然而,从机载高光谱测量中获得的无偏信息的定量估计主要需要校正双向反射分布函数 (BRDF) 所描绘的陆地表面的各向异性散射特性。迄今为止,角度 BRDF 校正方法很少结合观察照明几何和地形信息来全面理解和量化 BRDF 的影响。森林地区尤其如此,因为这些地区通常地形崎岖。本文介绍了一种校正机载高光谱影像在崎岖地形上空森林覆盖区域的 BRDF 效应的方法,在本文的补充中称为崎岖地形-BRDF (RT-BRDF) 校正。根据机载扫描仪和局部地形的特点,为每个像素计算局部视角和照明几何形状,并在崎岖地形的情况下使用这两个变量来调整 Ross-Thick-Maignan 和 Li-Transit-Reciprocal 核。新的 BRDF 模型适用于多线机载高光谱数据的各向异性。本研究中的像素数设置为 35,000,基于分层随机抽样方法,以确保全面覆盖视角和照明角度,并尽量减少 BRDF 模型对所有波段的拟合误差。基于中国林业科学研究院在普洱地区(中国)的 LiDAR、CCD 和高光谱系统 (CAF-LiCHy) 获取的多线机载高光谱数据,将应用 RT-BRDF 校正的结果与当前经验(C、太阳冠层传感器 (SCS) 加 C(SCS + C))和半物理(SCS)地形校正方法的结果进行了比较。定量评估和目视检查均表明,RT-BRDF、C 和 SCS + C 校正方法均可降低地形影响。然而,RT-BRDF 方法似乎更有效地降低多条航线重叠区域反射率的变化,其优势在于可以降低由宽视场 (FOV) 机载扫描仪、崎岖地形和长飞行时间内变化的太阳照射角度组合引起的 BRDF 效应。具体而言,针叶林和阔叶林的变异系数 (CV) 平均下降分别为 3% 和 3.5%。这种改进在近红外 (NIR) 区域(即 > 750 nm)尤为明显。这一发现为大面积机载高光谱勘测开辟了新的应用可能性。
纳米光子学利用了最佳的光子学和纳米技术,近年来通过允许亚波长度结构来增强光 - 物质相互作用,从而改变了光学技术。尽管这些突破,设计,制造和这种异国情调的设备的表征仍然存在通过迭代过程,这些过程通常在计算上是昂贵,内存密集和耗时的。相比之下,深度学习方法最近显示出出色的表现作为实用的计算工具,为加速此类纳米光子学模拟提供了替代的途径。本研究通过掌握独立的纳米结构属性及其相应的光学响应之间的隐藏相关性,提出了用于传播,反射和吸收光谱预测的DNN框架。所提出的DNN框架被证明需要足够数量的训练数据,以实现从计算模型中得出的光学性能的准确近似。全面训练的框架可以在计算成本上使用三个数量级来超越传统的EM解决方案。此外,提出的DNN框架采用了深度学习方法,努力优化影响纳米结构的几何维度的设计元素,从而深入了解纳米级的通用传播,反射和吸收光谱预测。此范式提高了复杂的纳米结构设计和分析的生存能力,并且它具有许多潜在的应用,涉及纳米结构与电磁场之间的异国情调的光 - 物质相互作用。在计算时间方面,与常规FEM方法相比,设计算法的速度快700倍以上(使用手动网格划分时)。因此,这种方法为快速而通用的方法铺平了道路,以表征和分析纳米光系统的光学响应。
与同时量身定制的空间和时间特性的超短脉冲合成在多模光子学中打开了新的视野,尤其是当空间自由度由可靠的拓扑结构控制时。当前的方法是在其拓扑电荷和光谱成分之间具有相关性的时空光束的当前方法产生了引人入胜的现象。然而,整形通常仅限于狭窄的拓扑和/或光谱带,极大地限制了可实现的时空动力学的广度。在这里,我们引入了一个用于超宽带脉冲的傅立叶时空塑形器,覆盖了近50%的可见光谱,并带有多种拓扑费用,值高达80。我们的方法不用依靠线性几何形状来依靠传统的光栅,而是采用带有圆形几何形状的衍射阳极,允许将方位相调制赋予带有轨道角动量的光束。我们通过基于高光谱离轴全息图引入一种表征技术来检索时空场。线性拓扑光谱相关性的剪裁能够控制波数据包的几种特性,包括其手性,轨道半径和相互缠绕的螺旋数,而复杂的相关性使我们能够操纵它们的动态。我们的带有宽带拓扑内容的时空束将使超高光激发,显微镜和多重功能中的许多新应用。
摘要:使用高光谱图像(HSIS)的对象跟踪获得令人满意的结果,以区分具有相似颜色的对象。然而,当目标发生变形时,跟踪算法往往会失败。在本文中,提出了基于暹罗Pn的高光谱跟踪器来解决此问题。首先,基于遗传优化方法的频带选择方法设计用于快速降低HSI中信息的冗余。特别是选择了三个具有最高关节熵的条带。为了解决SiamRPN模型中模板中的信息随着时间的流逝而衰减的问题,从一般目标跟踪基准中对数据集进行了更新网络的培训,该基准可以获取有效的累积模板。使用光谱信息的累积模板的使用使跟踪变形目标更容易。此外,预先训练的SiamRPN的转移学习旨在为HSIS获得更好的模型。实验结果表明,提出的跟踪器可以在整个公共数据集中获得良好的跟踪结果,并且当目标变形在定性和定量上比较时,它比其他流行的跟踪器要好,从而达到57.5%的总体成功率,变形挑战率的成功率为70.8%。
NRO奖项商业高光谱能力研究合同,弗吉尼亚州Chantilly - 国家侦察办公室(NRO)今天宣布授予六项商业高光谱图像研究合同(HSI)。根据NRO的战略商业增强(SCE)广泛代理公告(BAA)框架获得奖项的公司包括Blacksky Technology,Hypersat,Orbital Sidekick,Pixxel,Planet和Xplore。“当我们面临太空和地面上越来越复杂的威胁时,我们正在运营NRO历史上最大,最多样化,最有能力的架空星座。”“通过这些最新的合同,我们很高兴能够探索商业高光谱图像的潜力以及它可能为我们的世界一流的智能,监视和侦察能力做出贡献。”高光谱图像由来自电磁频谱的数百种颜色的光组成。由于高光谱成像会收集许多不同的光线,因此任何给定的对象都将具有独特的签名。这使用户能够在图像中获取有关每个像素的信息,目的是识别对象和材料。高光谱图像具有多种应用,包括农业,采矿,地质以及智力和监视。商业高光谱能力的合同着重于通过两阶段的努力来增加对当前和预期高光谱图像的可用性,质量和运营实用程序的了解。第二阶段的重点是评估轨道能力和采购数据产品。第一阶段着重于分析研究,以估算单个传感器和星座水平的系统功能,以及业务和网络安全计划。“在从RFP发布到奖励的短短四个月内,这些合同表明了我们对敏捷收购的持续承诺,” NRO商业系统计划办公室主任Pete Muend说。“速度对于利用来自行业的创新,评估HSI等新兴技术以及应对情报挑战的潜力仍然至关重要。”这些奖项遵循2022年9月颁发的商业射频遥感合同的六项BAA合同,并于2022年1月授予五项商业雷达BAA合同。
