合成孔径雷达是一种众所周知的遥感应用技术,具有即使在夜间或有云层覆盖的情况下也能不间断成像等巨大优势。然而,星载 SAR 传感器面临着成本和尺寸等重大挑战,这是其适用于未来低地球观测应用星座的障碍之一。SAR 传感器并不紧凑,需要大型或中型卫星,而这些卫星的成本高达数亿美元。为了解决这些挑战,最近启动的由欧盟委员会资助的 SPACEBEAM 项目旨在开发一种新颖的 SAR 接收扫描方法,利用混合集成光学波束形成网络 (iOBFN)。所提出的光子解决方案的紧凑性和频率灵活性符合未来低地球轨道卫星星座在尺寸、重量、功耗和成本 (SWaP-C) 方面的要求。
色散工程和高度非线性纳米光子学的出现有望通过将高横向场约束与超短脉冲操作相结合,开辟一条通往量子光学强相互作用领域的全光学途径。然而,要全面了解此类宽带设备中的光子动力学,对多模非高斯量子物理的建模和仿真提出了重大挑战,这凸显了对复杂的简化模型的需求,这些模型有助于进行有效的数值研究,同时提供有用的物理见解。在本文中,我们回顾了我们最近在不同抽象和通用水平上对宽带光学系统建模的努力,从同步泵浦振荡器的量子输入输出理论的多模扩展到基于非线性波导场论描述的数值方法的开发。我们希望我们的工作不仅能指导正在进行的理论和实验工作,以实现下一代量子设备,还能揭示宽带量子光子学的基本物理原理。
尤其是在传感领域,量子物理学设定了传感灵敏度的界限 - 称为海森堡极限 - 比当前传感器的灵敏度低几个数量级。在计算领域,据观察,量子计算机可以执行一些使用当前或未来的经典计算技术无法实现的计算。在通信领域,量子物理学可以实现可证明的安全通信,并且数据速率远高于经典香农极限所允许的数据速率。这些进步中的许多可能会在传感领域产生重大的近期和长期影响,例如安全通信、网络传感、大数据分析和机器学习,以及传感器和信息融合。这引出了以下问题:
演讲将介绍当今正在讨论的技术,更准确地说,纳米技术和表面状态理解如何允许开发具有高分辨率和灵敏度的新型传感器。演讲还将概述设想用于处理同时连接的传感器群的架构。演讲将评估一些重要问题,如小型化、高集成度、功耗和自主性以及网络安全。在第二部分中,将展示先进微系统在几乎所有工业领域中的目标应用。最后,在第三部分中,将展示除了硬件架构之外,数据处理、存储和可视化将在新兴的物联网中发挥重要作用,从而定义一种称为“信息物理系统”的新系统类别。
美国陆军设想在拥挤、竞争激烈的环境和多域战中作战并取得胜利,而网络中心战 (NCW) 的革命性能力是必不可少的。NCW 的特点是地理上分散的部队能够获得高水平的共享战场空间感知,通过自主将人员、平台、武器、传感器和决策辅助设备连接到一个网络中,可以利用这种感知来实现战略、战役和战术目标。未来的战场网络将产生大量数据,其数量可能超出数量。在多域战中,特别需要基于极不确定环境下大量异构、稀疏、嘈杂和定义不明确的数据的实时决策新技术。此外,人类有时已经完全适应了传感技术带来的信息。因此,建立在庞大信息源网络上的指挥架构更容易受到潜在的灾难性机器与人决策冲突的影响,也容易受到包括对手的欺骗、干扰和遮蔽在内的网络威胁,最终可能导致决策失败。在本文中,研究人员介绍了基于人工智能的概念化可视化分析框架的验证结果。研究人员的最终目标是将成熟的技术整合到本地指挥部和全球物流中心的态势感知技术中,以便在远征多域环境中对航空平台和自主系统进行有效的后勤指挥和控制。关键词:网络中心战、实时决策、人工智能、机器学习、网络安全、可视化分析、态势感知、状态感知系统、基于条件的维护、零维护、物流
美国国家标准与技术研究所信息技术实验室先进网络技术部,100 Bureau Dr.,盖瑟斯堡,马里兰州 20899 lijun.ma@nist.gov 摘要 我们推出了 NIST 量子网络创新平台 (PQNI),这是 NIST 园区内的一个新测试平台,旨在加速将量子系统集成到受控科学环境中的真实主动网络中。该测试平台将用于评估量子尺度设备和组件,如单光子源、探测器、存储器和各种量子网络协议和配置中的接口,以实现性能、优化、同步、损耗补偿、纠错、与传统网络流量的兼容性(通常称为共存)、操作连续性等。 关键词:量子通信;量子网络;现场测试平台 1. 简介 量子通信在近几十年来引起了人们的广泛关注,并且日益受到关注,现已成为一个非常活跃的研究领域。量子通信起源于 20 世纪 70 年代,当时 Stephen Wiesner 提出了使用量子态对信息进行安全编码以传输“量子货币”的想法。在最初遭到质疑之后,这个想法最终于 1983 年发表[1]。一年后,Charles Bennett 和 Gilles Brassard 提出了第一个量子密钥分发 (QKD) 协议,称为 BB84[2]。此后,许多新的 QKD 协议相继被提出,例如简化的 B92 [3]、纠缠光
本卷中的论文是封面和标题页上引用的技术会议的一部分。论文经过编辑和会议计划委员会的筛选和审查。一些会议演讲可能无法发表。其他论文和演讲录音可在 SPIE 数字图书馆 SPIEDigitalLibrary.org 上在线获取。这些论文反映了作者的工作和思想,并按提交内容在此处发布。出版商对信息的有效性或依赖该信息而导致的任何结果概不负责。请使用以下格式引用这些会议论文集的材料:作者,“论文标题”,第七届新型光电检测技术与应用研讨会,由 Junhong Su、Junhao Chu、Qifeng Yu、Huilin Jiang 编辑,SPIE 论文集第 11763 卷(SPIE,华盛顿州贝灵汉,2021 年)七位数文章 CID 编号。 ISSN:0277-786X ISSN:1996-756X(电子版) ISBN:9781510643611 ISBN:9781510643628(电子版) 由 SPIE 出版 P.O. Box 10, Bellingham, Washington 98227-0010 USA 电话 +1 360 676 3290(太平洋时间)·传真 +1 360 647 1445 SPIE.org 版权所有 © 2021,光学仪器工程师协会。 除美国版权法授予的合理使用条款外,为内部或个人用途或为特定客户的内部或个人用途复制本书中的材料已获得 SPIE 授权,但须支付复印费。 译文
Hubble在妓女望远镜委托的十几年内进行了这些发现,该发现的收集区是山顶60英寸望远镜的收集区域的2.8倍。威尔逊,但几乎没有或根本没有改进角度分辨率,受到限制。今天,新一代望远镜的建设正在进行中,大约是现有望远镜直径的两倍,并且至少带来了与Hubble能够利用的敏感性相同的提高。更重要的是,随着自适应光学元件在红外波长下成为常规,并逐渐转移到可见的波长,新的望远镜也将具有更好的角度分辨率。它们是最早在基本设计中内置自适应光学的望远镜之一,并预测许多观察模式中的衍射有限性能。敏感性和分辨率的综合改进是前所未有的。戏剧性的发现是不可预测的,但是在接下来的二十年中看到一些戏剧,我们不感到惊讶。
通过成人大脑视网膜定位映射评估新一代可穿戴高密度弥散光学断层扫描 (HD-DOT) 技术 Ernesto E. Vidal-Rosas a、Hubin Zhao a,b、Reuben Nixon-Hill c,d、Greg Smith c、Luke Dunne d、Samuel Powell c,e、Robert J. Cooper a 和 Nicholas L. Everdell ca DOT-HUB,BORL,伦敦大学学院医学物理和生物医学工程系,伦敦,WC1E 6BT,英国 b 格拉斯哥大学詹姆斯瓦特工程学院,格拉斯哥,G12 8QQ,英国 c Gowerlabs Ltd.,伦敦,英国 d 伦敦帝国理工学院数学系,伦敦,SW7 2BU,英国 e 诺丁汉大学电气与电子工程系,诺丁汉,NG7 2RD,英国 ernesto.vidal@ucl.ac.uk摘要:我们通过复制一系列经典的视觉刺激范例研究了新型 HD-DOT 系统的性能。血液动力学反应函数和皮质激活图复制了使用更大的基于光纤的系统获得的结果。1. 简介