SofíaLucilaRodríguezRiveraRivera儿科神经科医生毕业于La Raza国家医疗中心IMSS UNAM。附属于Tecnologico de Monterrey,Tec Salud Zambrano Hellion医院和区域综合医院墨西哥社会保障研究所(IMSS)蒙特雷(NuevoLeón)的33号。西班牙默西亚大学的癫痫学家。来自阿根廷布宜诺斯艾利斯的Arturo Jauretche国立大学的神经生理学家。是墨西哥神经病学学院,墨西哥儿科神经病学会和国际反癫痫联盟墨西哥分会的活跃成员。
摘要 结核性脑膜炎 (TBM) 的死亡率仍然保持在 30% 左右,大多数死亡发生在开始治疗后的 2 个月内。耐药菌株的死亡率更高,因此及早发现耐药性 (DR) 至关重要。靶向下一代测序 (tNGS) 产生高读取深度,可以检测低频率的 DR 相关等位基因。我们将 Deeplex Myc-TB(一种 tNGS 检测)应用于 72 名经微生物学确诊的 TBM 成人的脑脊液 (CSF) 样本,并将其基因组药物敏感性预测与表型敏感性测试 (pDST) 和全基因组测序的综合参考标准以及临床结果进行了比较。Deeplex 在 24/72 (33.3%) 个 CSF 样本中检测到结核分枝杆菌复合体 DNA,并为 22/24 (91.7%) 生成了完整的 DR 报告。 Deeplex 生成的读取深度与 MTB/RIF Xpert 的半定量结果相关。在与一线 DR 相关的典型基因座上可以看到频率 <20% 的等位基因。忽略这些低频等位基因,Deeplex 与除吡嗪酰胺和链霉素以外所有药物的综合参考标准 100% 一致。三名患者在治疗 30 天后脑脊液培养呈阳性;参考测试和 Deeplex 在其中两名患者中鉴定出异烟肼耐药性,而 Deeplex 单独在一名患者中鉴定出低频利福平耐药等位基因。五名患者死亡,其中一名患者通过 pDST 鉴定出吡嗪酰胺耐药性。脑脊液 tNGS 可以快速准确地检测出耐药 TBM,但其应用仅限于细菌负荷较高的患者。对于细菌负荷较低的患者,需要开发诊断和耐药性检测的替代方法。
使用 Prime Script 逆转录酶(Takara,日本)进行逆转录反应。使用 FastStart Essential DNA Probes Master(瑞士罗氏公司)和 QuantStudio 3 实时 PCR 系统(赛默飞世尔科技)进行定量 PCR(qPCR)。将每个基因的 mRNA 表达水平标准化为 Actb mRNA 的值。TaqMan 引物对和探针的序列描述如下:Actb:5'-FAMCCTGGCCTCACTGTCCACCTTCCA-TAMRA-3'(探针),5'- CCTGAGCGCAAGTACTCTGTGT-3'(正向引物),5'-CTGCTTGCTGATCCACATCTG-3'(反向引物); P2ry12:5'-/56-FAM/CCATGGATG/ZEN/TGCCTGGTGTCAACA/3IABkFQ/-3'(探针),5'- CCAGTCTGCAAGTTCCACTAAC-3'(正向引物),5'-GAGAAGGTGGTATTGGCTGAG-3'(反向引物);Igf1:5'-/56-FAM/TCCGGAAGC/ZEN/AACACTCACATCCACAA/3IABkFQ/-3'(探针),5'-
背景:线粒体DNA(mtDNA)是一种促炎性损伤相关的分子模式分子,可能是MS炎症和疾病活性的早期指标。自体造血干细胞移植(AHSCT)是MS的有效治疗方法,但其对脑脊液(CSF)的MTDNA水平的影响仍未开发。目标:验证MS患者中CSF MTDNA浓度升高并评估AHSCT对mtDNA浓度的影响。方法:多重液滴数字PCR(DDPCR)用于定量182 CSF样品中的mtDNA和核DNA。这些样品是从48名MS患者(在AHSCT前后的48例)中收集的,在年度随访中以及32个健康对照中收集。结果:MS患者的CSF CCF-MTDNA水平较高,与多个临床和分析因子相关,并在干预AHSCT后进行了归一化。在AHSCT前一年,观察到AHSCT之前的AHSCT之前的差异。结论:我们的发现表明,MS患者的CSF MTDNA水平升高,这与疾病活性相关并在AHSCT之后正常化。这些结果将mtDNA定位为监测炎症活性和对MS治疗的反应的潜在生物标志物。
结论:我们确定了脊髓神经损伤与修复领域人工智能研究的三个研究热点:(1)智能机器人和肢体外骨骼辅助康复训练;(2)脑机接口;(3)神经调节和非侵入性电刺激。此外,还讨论了许多新的热点:(1)从基于卷积神经网络的图像分割模型入手;(2)利用人工智能制造聚合物生物材料,为神经干细胞衍生的神经网络组织提供所需的微环境;(3)人工智能生存预测工具,以及遗传学领域的转录因子调控网络。虽然人工智能在脊髓神经损伤与修复领域的研究有很多好处,但该技术也存在一些局限性(数据和伦理问题)。未来的研究应解决数据收集问题,这需要大量高质量的临床数据样本来建立有效的人工智能模型。同时,该领域的基因组学和其他机制研究还很脆弱。未来,机器学习技术,如AI生存预测工具和转录因子调控网络,可用于与再生相关基因的上调和轴突生长的结构蛋白的产生相关的研究。
材料和方法:我们创新的 BCI-AO 干预措施解码了用户在完成任务时的专注观察。此过程涉及提供奖励性视觉提示,同时通过 PES 激活传入通路。分析包括 15 名中风患者。所有患者在四种不同的实验条件下接受 15 分钟的 BCI-AO 程序:无 PES 的 BCI-AO、有连续 PES 的 BCI-AO、有触发 PES 的 BCI-AO 和有反向 PES 应用的 BCI-AO。PES 以相当于感觉阈值 120% 的强度和 50 Hz 的频率应用于腕部尺神经。实验随机进行,间隔至少 3 天。为了评估皮质脊髓和周围神经的兴奋性,我们比较了四种条件下患手肌肉的运动诱发电位和 F 波在任务前后(0 后、20 分钟后)的参数。
研究设计:定性探索目标:脊髓损伤后的康复(SCI)是一个终身过程,涉及各种环境中的医疗保健,包括缺乏SCI特定服务的设施(即非SCI专业中心)。基于活动的治疗(ABT)是一种神经训练方法,涉及在伤害水平以下的密集,特定的运动实践。本研究探讨了在非SCI专用中心工作的物理和职业治疗师中ABT的现有知识,看法和实施。设置:加拿大医院和社区诊所的设计/方法:对在非SCI专业中心工作的加拿大治疗师进行了半结构化访谈,并在过去18个月内对至少一名患有SCI的患者进行了治疗。理论领域框架用于开发访谈问题,这些问题询问治疗师在提供SCI康复方面的经验,对ABT的理解以及其实施经验。访谈是音频记录的,逐字记录的,并使用解释性描述进行了分析。结果:来自各种环境(即急诊,住院治疗,长期护理,门诊康复,农村门诊诊所)的四名物理治疗师和三名职业治疗师。确定了三个主题:(1)非SCI专业中心的可用知识,资源和治疗时间挑战ABT实施,(2)在非SCI专用中心的当前治疗实践与ABT和(3)对ABT知识的渴望如何。参与者表示渴望了解有关ABT的更多信息。尽管参与者不熟悉ABT一词,但可以确定他们在不知不觉中将ABT的某些组成部分纳入其实践中。结论:非SCI专用中心中ABT的当前知识和实施是有限的。对非SCI专业中心的治疗师的ABT教育量身定制可能会增加ABT的实施。
脊髓损伤(SCI)大大降低了受影响个体的生活质量。恢复功能是患者人群的主要关注点,也是治疗干预措施的主要目标。目前,即使有越来越多的临床试验,仍然没有有效的治疗方法可以改善SCI后神经系统的结果。大量工作表明,神经茎/祖细胞(NSPC)的移植可以通过提供可以整合到受伤的宿主神经回路中的新神经元来促进受伤的脊髓的再生。尽管有这些有希望的发现,但在NSPC移植后观察到的功能恢复程度仍然适度。很明显,这种复杂损伤的治疗不能通过一种治疗方法来解决。在这次迷你审查中,我们讨论了可以与NSPC移植一起使用以促进脊髓再生的组合策略。我们首先引入生物工程和神经调节方法,并强调使用这些策略与NSPC的移植相结合。NSPC移植的未来可能包括一种多因素方法,将干细胞与生物材料和/或神经调节结合在一起,作为SCI的有希望的治疗方法。
抽象的图形图例信息有关组织损伤或有害刺激的信息是通过中枢神经系统中的伤害性途径来处理的,这些途径是疼痛感知的基础。这些途径在产后发育的长时间发生了深刻的变化。从新生儿到成年人,脊髓,脑干和皮层中的生理联系经历了相当大的变化,因此有害信息的传播和调节高度取决于年龄。我们对这些过程的大部分理解都来自对实验室啮齿动物不同发育阶段的脊髓,脑干和皮质的感觉神经元和网络的活性分析。越来越多的证据表明,早期生命中不合时宜的组织损伤会导致疼痛敏感性的终生变化,这导致着眼于伤害感受回路成熟的关键领域和发育脆弱性时期。
结果:我们的搜索确定了44项研究,研究了三个SMN2副本对临床特征的影响(21在表型上,自然历史上的13,功能状态和其他体征/症状)。在患有SMN1缺失的I型SMA或预症状的婴儿中,与两份SMN2副本相比,三个SMN2副本与后来的症状发作,运动功能较慢和更长的存活率相关。在患有II型SMA或III型患者中,与四个SMN2副本相比,三个SMN2副本与早期症状发作,移动丧失和呼吸机依赖性有关。11项研究检查了Nusinersen的治疗效果(9项研究),Onasemnogene Abeparvovec(一项研究),以及三种SMN2副本患者的一系列治疗(一项研究)。在预症状的婴儿中,早期治疗延迟了症状的发作,并在三个SMN2副本的患者中保持运动功能。拷贝数对有症状患者治疗反应的影响尚不清楚。
