我们在使用定制的互补金属 - 氧化物 - 氧化流程过程制造的绝缘子纳米线上,在硅中报告了双极栅极绘制的量子点。双极性是通过将栅极延伸到固有的硅通道上的高度掺杂的N型和P型末端来实现的。我们利用能够向硅通道提供双极载体储层的能力,以证明使用相同的电极来重新定义,并用相同的电极,带有孔或电子的双量子点。我们使用基于栅极的反射测量法来感知电子和孔双量子点的点间电荷过渡(IDT),从而实现了电子(孔)的最小整合时间为160(100)L s。我们的结果提供了将电子旋转与硅中电孔旋转的长相干时间相结合的机会。
量子网络和量子计算技术目前面临的扩展障碍归根结底是同一个核心挑战,即大规模分布高质量纠缠。在本文中,我们提出了一种基于硅中光学活性自旋的新型量子信息处理架构,该架构为可扩展的容错量子计算和网络提供了一个综合的单一技术平台。该架构针对整体纠缠分布进行了优化,并利用硅中的色心自旋(T 中心)的可制造性、光子接口和高保真信息处理特性。硅纳米光子光路允许 T 中心之间建立光子链接,这些 T 中心通过高度连通的电信波段光子联网。这种高连接性解锁了低开销量子纠错码的使用,大大加快了模块化、可扩展的容错量子中继器和量子处理器的时间表。
我们提出了Naybo 2的中子衍射研究,Naybo 2是一种候选量子旋转液体化合物,该化合物构成了磁性YB 3+离子的几何沮丧的三角形晶格。我们观察到持续到至少20 K的漫射杂志散射,这表明该系统中存在短距离磁相关性,直至相对较高的能量尺度。使用反向蒙特卡洛和杂志配对分布函数分析,我们证实了这些相关性的主要抗磁磁性,并表明可以通过在三角晶格上的海森伯格或XY旋转的非互操作层很好地描述了弥漫性散射数据。我们排除了Ising旋转和短距离条纹或120°的阶段,作为Naybo 2的候选基态。这些结果与Naybo 2中可能的QSL基态相一致,并展示了与短距离磁相关的材料组合的相互和真实空间分析的好处。
1 National Public Radio, “A Look At How The Revolving Door Spins From FDA To Industry,” September 28, 2016, https://www.npr.org/sections/health-shots/2016/09/28/495694559/a-look-at-how-the-revolving-door-spins-from-fda- to-industry; BMJ,“旋转门:董事会会员,对冲基金和负责调节行业的FDA负责人”,彼得·多什(Peter Doshi),2024年5月8日,https://wwwww.bmj.com/content/385/385/bmj.q975。2参见,例如,美国办公室Senator Elizabeth Warren, In Response to Senator Warren, FDA Commissioner Nominee Dr. Robert Califf Makes Strongest Ethics Commitments of Any Senior Biden Administration Official, January 31, 2022, Press Release, https://www.warren.senate.gov/newsroom/press-releases/-in-response-to-senator-warren-fda-专员提名人 - 罗伯特 - 阿里伯特·马克斯·马克斯 - 斯特朗斯特 - 伦理学 - 官员官员。
开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。本地信息通过创建称为信息争夺的复杂相关性来传播系统中,因为此过程可防止从本地测量中提取信息。在这项工作中,我们开发了一个改编自固态NMR方法的模型,以量化信息的争夺。通过时间逆转Loschmidt回声(LE)和多个量子相干实验进行了逆转,这些实验是通过内在包含不完美的。考虑到这些缺陷,我们得出了超时相关性(OTOC)的表达式,以根据测量信息传播的活动旋转的数量来量化可观察到的信息。基于OTOC表达式,在LE实验中的非扭转术语的效应自然而然地产生了效应,从而诱导了可测量的信息争吵程度的定位。这些效果定义了确定动态平衡的可观察到的活性自旋数量的定位簇大小。我们将模型的预测与使用固态NMR实验进行的量子模拟进行对比,这些量子模拟与时间反向回声相混合的信息与受控的缺陷。与量子信息的动力学及其从实验数据确定的效果相关的动力学发现了出色的定量一致性。提出的模型和衍生的OTOC设置了用于量化大量子系统(超过10个4旋转)的量子信息动态的工具,与实验实现了本质上包含不完美的实现。
固态自旋缺陷,尤其是可能实现长相干时间的核自旋,是量子存储器和传感器的有力候选者。然而,由于其固有四极子和超精细相互作用的变化,它们当前的性能仍然受到失相的限制。我们提出了一种不平衡回波来克服这一挑战,即使用第二个自旋重新聚焦这些相互作用的变化,同时保留存储在核自旋自由演化中的量子信息。不平衡回波可用于探测材料中的温度和应变分布。我们开发了第一性原理方法来预测这些相互作用的变化,并揭示它们在较大温度和应变范围内的相关性。在金刚石中大约 10 10 个核自旋的集合中进行的实验表明,受其他噪声源的限制,失相时间增加了 20 倍。我们进一步通过数值表明,我们的方法可以重新聚焦比我们实验中更强的噪声变化。
固态自旋缺陷,尤其是具有可能可实现的长相干时间的核自旋,是量子记忆和传感器的诱人候选者。但是,由于其内在四极杆和超细相互作用的变化,它们的当前性能仍然受到限制。我们提出了一个不平衡的回声来克服这一挑战,通过使用第二个自旋来重新调整这些相互作用的变化,同时保留存储在核自旋进化中的量子信息。不平衡的回声可用于探测材料中的温度和应变分布。我们开发了第一个原理方法来预测这些相互作用的变化,并揭示了它们在大温度和应变范围内的相关性。在钻石中大约10 10个核自旋中进行的实验表明,增加了20倍的去态时间,受到其他噪声源的限制。我们进一步表明,与实验中的相比,我们的方法可以重新调整更强的噪声变化。
我们预测了一系列不寻常的量子声学现象,这些现象是由完全可调固态平台中的声音-物质相互作用引起的,在该平台中,金刚石中的一系列固态自旋与一维光机械晶体中的量化声波耦合。我们发现,通过使用在光机械相互作用中引入位置相关相的空间变化激光驱动器,可以原位调整机械能带结构,从而导致非常规的量子声音-物质相互作用。我们表明,当自旋与能带共振时,可以发生准手性声音-物质相互作用,可调范围从双向到准单向。当固态自旋频率位于声学带隙内时,我们证明了一种奇异的极化子束缚态的出现,它可以介导长距离可调、奇邻域和复杂的自旋-自旋相互作用。这项工作扩展了目前对量子声子的探索,可以在量子模拟和量子信息处理中得到广泛的应用。