高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
摘要:跌倒和随后的并发症是导致发病率和死亡率的主要因素,尤其是在老年人中。为了解决这个问题,我们旨在开发一种轻巧的动态装置,以增加鞋子和步行表面之间的摩擦,这些设备在各个表面,尤其是冰之间有效。受自然界中发现的爪子和鳞片的启发,我们开发了一系列的基里加米结构,这些结构可用于鞋类外极端,以在前脚中产生较高的摩擦力。我们通过数值模拟,体外表面相互作用和体内人力板测量评估了这些元面孔,以鉴定能够调节一系列表面摩擦的最佳基里加米设计。我们预计这些系统的潜在应用可以帮助减轻各种环境中跌倒的风险。
此类移动医疗微型机器人的开发和实施,包括软机器人微设备的制造[11,12]、生物相容性或响应性 (自适应) 材料的合成[13–15] 以及体内运动策略。[16–22] 已提出了大量远程控制医疗微型机器人,以实现形状改变、多功能化和重构,以响应不同的刺激,如磁场[23–27]、温度[28,29]、化学物质[30,31]、光[32] 和超声波[33,34],用于各种医疗应用,如靶向药物输送、微创手术和遥感。[35,36] 然而,微型机器人与生物组织的相互作用、复杂的生物流体环境以及多种刺激的重叠是其未来医疗应用面临的主要挑战。[37]
世界正在迎来知识密集型和高度数字化的经济。这个世界也许看起来不像是在打仗,但实际上我们正在进入第四次工业革命——一个超速发展和重大技术变革的时代。
近年来,多层感知器 (MLP) 成为计算机视觉任务领域的研究热点。由于没有归纳偏差,MLP 在特征提取方面表现良好并取得了惊人的效果。然而,由于其结构简单,其性能高度依赖于局部特征通信机制。为了进一步提高 MLP 的性能,我们引入了脑启发神经网络的信息通信机制。脉冲神经网络 (SNN) 是最著名的脑启发神经网络,在处理稀疏数据方面取得了巨大成功。SNN 中的泄漏积分和触发 (LIF) 神经元用于在不同时间步骤之间进行通信。在本文中,我们将 LIF 神经元的机制合并到 MLP 模型中,以在不增加 FLOP 的情况下实现更好的准确率。我们提出了一种全精度 LIF 操作来在块之间进行通信,包括不同方向的水平 LIF 和垂直 LIF。我们还建议使用组 LIF 来提取更好的局部特征。借助 LIF 模块,我们的 SNN-MLP 模型在 ImageNet 数据集上分别仅使用 4.4G、8.5G 和 15.2G FLOP 就实现了 81.9%、83.3% 和 83.5% 的 top-1 准确率,据我们所知,这是最先进的结果。源代码将在 https://gitee.com/mindspore/models/tree/master/research/cv/snn mlp 上提供。
微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
用户控制图片(亮度,对比度,清晰度,背部,色彩,颜色,降噪,选择,低蓝光,低光,颜色温度,颜色控制,颜色控制,超级,图片重置),屏幕(缩放模式,自定义缩放,屏幕重置),音频(balance,balance,balance,traleble,treble,bass,bass,bass,audio nof(line out out(line),最高),最大volume, mute, audio reset, audio out sync, speaker setting), configuration 1 (Android launcher, switch on state, Touch lock, Touch mode, mouse mode, panel saving, RS232 routing, boot on source, WOL, conf.1 reset, factory reset), configuration 2 (OSD timeout, OSD H position, OSD V position, system rotation, info OSD, logo and animation, logo setting, animation设置,监视ID,监视信息,HDMI版本,conf2重置),高级选项(售货亭模式,侧栏,无信号图像,电动支架,电动控制,电源LED照明,风扇,关闭计时器,时间表,带有一根电线的HDMI,带有一线电线的HDMI,一根电线,故障转移,语言,OSD透明度,电源节省,电源节省,高级选项,高级选项重置)
深度卷积神经网络(DCNN)的预训练在视觉情绪分析(VSA)领域起着至关重要的作用。大多数提出的方法都采用在大型物体分类数据集(即 ImageNet)上预训练的现成的主干网络。虽然与随机初始化模型状态相比,它在很大程度上提高了性能,但我们认为,仅在 ImageNet 上进行预训练的 DCNN 可能过于注重识别物体,而未能提供情绪方面的高级概念。为了解决这个长期被忽视的问题,我们提出了一种基于人类视觉情绪感知(VSP)机制的面向情绪的预训练方法。具体而言,我们将 VSP 的过程分为三个步骤,即刺激接受、整体组织和高级感知。通过模仿每个 VSP 步骤,我们通过设计的情绪感知任务分别对三个模型进行预训练,以挖掘情绪区分的表示。此外,结合我们精心设计的多模型融合策略,从每个感知步骤中学习到的先验知识可以有效地转移到单个目标模型中,从而获得显着的性能提升。最后,我们通过大量实验验证了我们提出的方法的优越性,涵盖了从单标签学习(SLL)、多标签学习(MLL)到标签分布学习(LDL)的主流 VSA 任务。实验结果表明,我们提出的方法在这些下游任务中取得了一致的改进。我们的代码发布在 https://github.com/tinglyfeng/sentiment_pretraining 。
到2050年,世界的预计人口将为100亿。[1]与如此庞大的人口规模相关的最艰巨的可持续性挑战之一将是处理所有塑料产品[2],即Poly-ersers的生产和回收。[3]毫不奇怪,在全球范围内进行聚合物回收的研究努力。机械回收倾向于导致原始材料,但质量较低。[4]一个更好的可能性是化学回收,[5,6],即[7]化学[7] [7]或生物学[8]将聚合物催化为其组成单体,以便将它们重新聚合到同一质量的质量Mate-Mate-Mate-Rial,或A NEW(CO CO)。[9,10]另一种方法是将聚合物重新利用为不同的增值化学物质(升级)。[11-15]两种方法都是闭环,即与统一经济原则兼容。[16]
●修改通识教育模型,以支持学生围绕他们的目标,兴趣,先前的学习经验和学习计划来塑造他们的教育,同时参与广泛的自由教育。
