。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月5日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.02.05.636605 doi:Biorxiv Preprint
提供灵活的视频协作,其中包含高级相机系统,横梁成形麦克风,65英寸触摸屏和智能功能。拉力板65消除了分散视觉效果和噪音,以获得灵活和开放空间的最终协作体验。Rally Board 65提供了使用多功能相机放置和墙壁上的安装选项的部署灵活性,在桌子和Credenzas上或与Cart配件配对,因此可以在空间之间轻松移动。
核酸疗法在沉默、表达或编辑基因方面具有巨大潜力。在这里,我们介绍了一种基于天然脂蛋白的纳米递送平台,该平台可防止小干扰 RNA (siRNA) 过早降解,确保其靶向和细胞内递送到骨髓中的造血干细胞和祖细胞 (HSPC)。在建立了一种在其核心中稳定地整合 siRNA 的载脂蛋白脂质纳米颗粒 (aNP) 原型后,我们建立了一个综合库,并彻底表征了单个 aNP 的物理化学性质。在对所有配方进行体外筛选后,我们选择了八种代表库多样性的 siRNA-aNP,并使用静脉给药方案确定了它们沉默小鼠免疫细胞亚群中溶酶体相关膜蛋白 1 (LAMP1) 的能力。我们的数据表明,使用不同的 aNP,我们可以在免疫细胞亚群及其骨髓祖细胞中实现功能性基因沉默。除了基因沉默之外,aNP 平台固有的与免疫细胞结合的能力使其具有向 HSPC 提供其他类型核酸疗法的巨大潜力。
大脑的皮质可塑性是使我们能够学习和适应环境的主要特征之一。的确,由于两种形式的可塑性,大脑皮层具有自组织的能力:结构性塑性性,从而产生或削减了神经元之间的突触连接,并改变了突触可塑性,从而改变了突触连接的力。这些介绍很可能是基于人脑发展的极其竞争的特征:多模式关联。故障,感觉方法的多样性,例如视觉,声音和触摸,大脑都达到了相同的概念。此外,生物学观察结果表明,当两者相关时,一种模态可以激活另一种方式的内部表示。为了建模这种行为,Edelman和Damasio分别提出了逆转和收敛/发散区,在该区域中,双向神经通信可以导致多模式融合(收敛)和模态激活(差异)。尽管如此,这些理论框架并未在neu-rones级别提供计算模型。本论文的目的是首先以(1)的(1)多模式学习而不是超级靶向的,(2)的(2)在能量水平上对能量处理的(3)能量处理的(2)。我们提出并比较不同的标签方法,以最大程度地减少标签数量,同时保留最佳精度。根据这些准则和对文献神经模型的研究,我们选择了Kohonen提出的自组织(SOM)卡作为我们系统的主要组成部分。我们介绍了迭代网格,这是一个完全分布在材料神经元之间的架构,该架构允许在SOM中进行蜂窝计算,因此,在处理和连接时间方面逐渐了解的系统。然后,我们在释放的标签后学习中评估了SOM的性能:在训练期间没有标签,那么很少有标签可用于标记SOM的神经元。我们使用SPIKE(SNN)中的神经网络将表演与不同的方法进行比较。然后,我们建议使用提取的特征而不是原始数据提高SOM的性能。我们正在使用两种不同的方法从MNIST数据库中提取SOM分类的研究:一种具有卷积自动介绍者的机器学习方法和SNN的生物启发方法。为了证明SOMA冲突的能力 - 如果数据更复杂,我们通过传输DVET使用Mini-Imagenet数据库来使用学习。完成,我们转到多模式关联机制。我们通过使用SOMAS和每周学习来基于最近的原理来构建以生物启发的垃圾模型。我们提出并比较不同的
本研究旨在扩大我们目前对脑启发网络科学原理在训练具有稀疏连接的人工神经网络(ANN)中的应用的认识。动态稀疏训练(DST)可以减少ANN训练和推理的计算需求,但现有方法在高连接稀疏度水平下难以保持最佳性能。Cannistraci-Hebb训练(CHT)是一种受大脑启发的增加DST连接的方法。CHT利用无梯度、拓扑驱动的链接再生机制,与完全连接的网络相比,该机制已被证明可以在各种任务中实现超稀疏(1%连接或更低)的优势。然而,CHT有两个主要缺点:(i)它的时间复杂度为O(N·d3) - N节点网络大小,d节点度 - 因此它只能有效地应用于超稀疏网络。 (ii) 它严格选择最高的链接预测分数,这不适合早期的训练阶段,因为此时网络拓扑结构中存在许多不可靠的连接。在这里,我们提出了一个矩阵乘法 GPU 友好的 CH 链接预测器近似值,它将计算复杂度降低到 O(N3),从而能够在大型模型中快速实现 CHT。此外,我们引入了 Cannistraci-Hebb 训练软规则 (CHTs),它采用灵活的策略在链接移除和重新生长中采样连接,平衡网络拓扑的探索和利用。为了进一步提高性能,我们将 CHT 与 S 型逐渐密度衰减策略相结合,称为 CHTss。经验
软材料通过紧密模仿生物体的复杂运动和变形行为,在小型机器人应用中发挥着至关重要的作用。然而,传统的制造方法在制造高度集成的小型软设备方面面临挑战。在这项研究中,利用微流体技术精确控制反应扩散 (RD) 过程,以生成多功能和区室化的钙交联海藻酸盐微纤维。在 RD 条件下,生产出复杂的海藻酸盐纤维,用于磁性软连续机器人应用,具有可定制的功能,例如几何形状(紧凑或中空)、交联程度和磁性纳米粒子的精确定位(在核心内部、围绕纤维或一侧)。这种精细控制允许调整微纤维的刚度和磁响应性。此外,纤维内可化学裂解的区域能够在旋转磁场下分解成更小的机器人单元或卷起结构。这些发现证明了微流体在处理高度集成的小型设备方面的多功能性。
抽象的神经形态处理系统实施具有混合信号模拟/数字电子电路和/或熟悉设备的混合信号神经网络代表了一种有希望的技术,用于需要低功率,低延迟,并且由于缺乏连接性或隐私问题而无法连接到离线处理的云,并且无法连接到离线处理。但是,这些电路通常嘈杂且不精确,因为它们受设备之间的变化影响,并且以极小的电流运行。因此,在这种方法之后,实现可靠的计算和高精度仍然是一个公开挑战,一方面阻碍了进度,另一方面有限地采用了这项技术的广泛采用。通过构造,这些硬件处理系统具有许多在生物学上合理的约束,例如参数的异质性和非同质性。越来越多的证据表明,将这种限制应用于人工神经网络,包括在人工智能中使用的限制,可以促进学习方面的鲁棒性并提高其可靠性。我们认为,这些策略对于指导设计可靠且可靠的超低功率电子神经处理系统,该系统使用嘈杂和不精确的计算基板(例如阈值神经形态电路和新兴的记忆技术)实施。Here we delve even more into neuroscience and present network-level brain-inspired strategies that further improve reliability and robustness in these neuromorphic systems: we quantify, with chip measurements, to what extent population averaging is effective in reducing variability in neural responses, we demonstrate experimentally how the neural coding strategies of cortical models allow silicon neurons to produce reliable signal representations, and show how to强有力地实施基本的计算基础,例如选择性放大,信号恢复,工作记忆和关系网络,从而利用此类策略。
公开会议:2025 年 2 月 4 日 一读:2025 年 2 月 4 日 日期 日期项目(选一项)X 法令 谴责 拨款接受/修正案 决议 拨款申请 公开听证会请求 其他:______________________________________________________________________________ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 项目描述:对孟菲斯和谢尔比县能源保护法规的修正案。案件编号:无 地点:孟菲斯市和非建制谢尔比县 申请人:孟菲斯和谢尔比县规划和发展部 代表:约翰·泽纳,部门主任 要求:通过对孟菲斯和谢尔比县能源保护法规的修订。 区域:此修订影响孟菲斯市和非建制谢尔比县内的所有财产。建议:规划和发展司:批准= ...实体 (3) 理事会 委员会 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 资金:(2) 需要城市支出 - (1) 是 (2) 否 $ 支出金额 $ 待收收入 资金来源和金额 $ 运营预算 $ CIP 项目 #_______________________________ $ 联邦/州/其他 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =行政批准:日期 职位 ___________________________________________ ____________ 首席规划师 _____________________________________________ ____________ 副主任 _____________________________________________ ____________ 主任 _____________________________________________ ____________ 主任(联合批准) _____________________________________________ ____________ 主计长 _____________________________________________ ____________ 财务总监 _____________________________________________ ____________ 市检察官 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = _____________________________________________ ____________ 首席行政官 _____________________________________________ ____________ 委员会主席
推理和问答作为人类的基本认知功能,一直是人工智能面临的重大障碍。虽然大型语言模型(LLM)取得了显著的成功,但将外显记忆与结构化推理能力相结合仍然是一个持续的难题。可区分神经计算机(DNC)模型虽然在一定程度上解决了这些问题,但仍然面临着算法复杂度高、收敛速度慢、鲁棒性有限等挑战。受大脑学习和记忆机制的启发,本文提出了一种基于记忆转换的可区分神经计算机(MT-DNC)模型。MT-DNC 在 DNC 框架内整合了工作记忆和长期记忆,使这些记忆系统之间能够自主转换获得的经验。这有助于有效地提取知识并增强推理能力。实验结果
差异隐私 (DP) [1,2] 是一个严格的数学框架,用于在分析和处理数据集的同时保留每个个体的信息。直观地说,差异隐私算法可以学习由 n 个用户组成的数据集的统计属性,但几乎不会泄露每个用户的任何信息。在处理医院数据、银行、社交媒体等敏感数据时,此类机制具有重要意义。除了隐私保护数据分析外,差异隐私还在计算机科学的其他领域找到了多种应用,如机器学习 [3、4、5、6]、统计学习理论 [7、8、9、10]、机制设计 [11]。自其推出以来,已开发出多种用于隐私数据分析设计的分析工具 [12、13、14、15]。最常见的是,这些机制利用诸如在最终输出中添加噪声或将输入随机化之类的技术。可以使用简单的工具(例如基本组合规则和后处理的鲁棒性)对由这些块构建的复杂机制进行松散的分析。然而,实际应用中隐私和实用性之间的固有权衡引发了更细化规则的发展,从而带来了更严格的隐私界限。这个方向的趋势是表明多种随机性来源放大了标准 DP 机制的保证。特别是,已经证明了子采样、迭代、混合和改组等 DP 放大结果 [16,17,18,19]。鉴于过去几十年量子计算和量子信息对计算机科学不同领域产生了重大影响,一个有趣的问题是量子和量子启发算法是否可以增强差异隐私。随着如今噪声中型量子设备 (NISQ) 的出现,这个问题变得更加重要 [20]。一方面,这些设备的噪声特性(之前也被 [21] 所利用),另一方面,量子算法的潜在能力,使得这种量子或混合量子经典机制成为差异隐私角度的一个有趣研究课题。此外,机器学习和差异隐私之间的联系表明,回答这个问题可以带来对量子机器学习能力的有趣见解。
