印刷电路板(PCB)设计的规模已大大提高,现代商业设计具有10,000多个组件。但是,放置过程大大依赖了需要数周完成的手动努力,强调了对自动PCB放置方法的需求。PCB放置的挑战来自其灵活的设计空间和有限的路由资源。现有的自动PCB放置工具在质量和可扩展性方面取得了有限的成功。相比之下,非常大规模的集成(VLSI)放置方法已被证明是可扩展的,对于具有数百万个细胞并提供高质量结果的设计是可扩展的。因此,我们提出了柏树,这是一种受VLSI启发的可扩展的,加速的PCB放置方法。它结合了适合PCB布局的量身定制的成本功能,约束处理和优化的技术。此外,对现实和开源基准的需求不断增长,以(1)在工具和(2)建立Performance基准之间进行有意义的比较以跟踪PCB放置技术的进度。为了解决这一差距,我们提出了一个从实际商业设计中合成的PCB基准套件。我们使用基准套件来评估针对最先进的商业和学术PCB放置工具的方法。我们的方法在提出的基准测试标准上证明了1-5.9倍的可路由。对于完全路由的设计,赛普拉斯达到了1-19.7×较短的路由轨道长度。随着GPU加速度,柏树在运行时间内最多可提供492.3倍的加速。最后,我们展示了对真实商业设计的可扩展性,这是现有工具无与伦比的功能。
Successes in Managing Climate Change ................................................................................................ 5 Issues in Managing Climate Change ...................................................................................................... 5 Opportunities for Collaboration ............................................................................................................ 6 Insights on Previous Climate Change Action Items ...................................................................................................................................... 6
他们的实验验证了内部复杂性模型在处理复杂任务的有效性和可靠性,为将神经科学的动态特性融入人工智能提供了新的方法和理论支持,也为优化和提升人工智能模型的实用性能提供了可行的解决方案。
由于其特定的强度和海洋功能,薄壁结构越来越多地使用自动动机,以减少易受伤害的道路使用者(VRU),运输和航空航天工业的致命和严重伤害[1-5]。先前的分析[2,6,7],实验[8-10]和计算研究[3,11,12]的结果使恶魔散布在能量吸收和崩溃的结果取决于许多结构和材料参数,包括金属类型,织物/基质类型,制造技术,结构几何,结构性的几何形状,维度和载荷条件[13-15]。由于其出色的机械特性,铝已经被许多作者研究了前几年[16,17]。今天,尽管复合材料和聚合物材料可用于能量吸收应用,但铝仍用于制造能量吸收。基于其延展性特征,轴向载荷下的铝管通过产生琴弦和DIA MOND变形模式通过多种塑性变形机制分散动能[18]。此外,在最近的Deca des中,管道几何形状的影响(即圆形,三角形,正方形和矩形)在薄壁吸收的响应上已得到广泛研究。
事件驱动的传感器对于实时应用至关重要,但是当前技术的集成面临着诸如高成本,复杂信号处理和噪声脆弱性之类的限制。这项工作引入了一个由生物启发的机械发光视觉传感器,该传感器使标准基于框架的摄像头能够通过仅在机械应力下发射光执行事件驱动的传感,从而充当事件触发器。从犬齿的生物力学中汲取灵感,传感器利用杆状图案阵列来增强机械发光信号灵敏度并扩大接触表面积。此外,设计支持机器学习的算法旨在实时准确分析相互作用触发的机械发光信号。传感器被整合到四倍的机器人的口腔界面中,显示出增强的交互式功能。该系统成功地分类了八个互动活动,平均精度为92.68%。综合测试验证了传感器在捕获动态触觉信号并扩大与环境相互作用时机器人的应用范围时的效率。
硅藻被描述为“纳米级光刻师”,因为它们能够制造复杂的三维无定形二氧化硅外骨骼。这些结构的层次结构为硅藻提供了机械保护以及过滤、漂浮和操纵光线的能力。因此,它们成为一种非凡的多功能材料模型,可供人们从中汲取灵感。在本文中,我们使用数值模拟、分析模型和实验测试来揭示 Coscinodiscus 物种硅藻的结构和流体动力学效率。然后,我们提出了一种新型的 3D 可打印多功能仿生材料,可用于多孔过滤器、热交换器、药物输送系统、轻型结构和机器人等应用。我们的研究结果证明了大自然作为高效可调系统的材料设计师的作用,并突出了硅藻在工程材料创新方面的潜力。此外,本文报告的结果为扩展硅藻的结构-性能表征奠定了基础。
头盔设计的主要目标继续阻止创伤性脑损伤。然而,实现了最佳的用户体验,包括适合性,舒适性,透气性,防水性和头盔可重复使用性等方面变得越来越重要。因此,设计具有多功能性能的头盔代表了这些安全设备的最新技术前沿。这项研究从特定物种的单细胞藻类的形态中汲取灵感,coscinodiscus sp。硅藻,设计一种能够复制其细胞结构和多功能性的仿生材料。与生物学对应物不同,合成材料专门设计为多发性头盔的内线,适用于城市运动和微型动力应用。该材料的架构是使用计算机辅助设计(CAD)工具建模的,并使用基于有限元元素建模和对3D打印的弹性样品进行的数值和准静态压缩测试来分析其吸收机械能的能力。然后,通过参数优化,其性能最大化。结果表明,设计的材料表现出与其他细胞材料(例如蜂窝)相当的能量吸收特征,同时提供了轻质,透气性和对大气剂的保护。关键字
酪氨酸磷酸化是一种重要的翻译后修饰,可调节多细胞生物中许多生化信号网络的作品。迄今为止,在人类蛋白质中观察到了46,000种酪氨酸,但对大多数这些位点的功能和调节知之甚少。为了测试磷酸化的作用,主要挑战是产生重组磷酸蛋白。 mu-对酸性氨基酸的标记通常无法复制磷酸化的酪氨酸残基的大小和电荷,而合成氨基酸掺入的成本很高,产量相对较低。 在这里,我们展示了一种方法,灵感来自于如何通过二次焦油互动来发现细胞中的天然玫瑰氨酸激酶,从而增强了酪氨酸激酶的先天催化特异性,而无需过多。 我们设计了用于多种方法的多种方法,用于在大肠杆菌中产生高产量的磷酸蛋白产物。 在这里,我们测试磷酸化作为靶向相互作用(SH3-聚丙烯序列)的函数的函数,该磷酸化是跨不同特异性山脉激酶的不同反应方法。 该系统提出了一种廉价且可拖动的系统,用于产生磷蛋白和磷酸肽,我们演示了如何用于测试EGFR和PD-1靶标的抗体特异性。 这种方法是通过体外反应和共表达方法的灵活性来增强重组蛋白上的重组蛋白的共同作用的一种概括方法。 我们将其称为SISA-KIT,用于信号启发的合成增强激酶工具包。主要挑战是产生重组磷酸蛋白。mu-对酸性氨基酸的标记通常无法复制磷酸化的酪氨酸残基的大小和电荷,而合成氨基酸掺入的成本很高,产量相对较低。在这里,我们展示了一种方法,灵感来自于如何通过二次焦油互动来发现细胞中的天然玫瑰氨酸激酶,从而增强了酪氨酸激酶的先天催化特异性,而无需过多。我们设计了用于多种方法的多种方法,用于在大肠杆菌中产生高产量的磷酸蛋白产物。在这里,我们测试磷酸化作为靶向相互作用(SH3-聚丙烯序列)的函数的函数,该磷酸化是跨不同特异性山脉激酶的不同反应方法。该系统提出了一种廉价且可拖动的系统,用于产生磷蛋白和磷酸肽,我们演示了如何用于测试EGFR和PD-1靶标的抗体特异性。这种方法是通过体外反应和共表达方法的灵活性来增强重组蛋白上的重组蛋白的共同作用的一种概括方法。我们将其称为SISA-KIT,用于信号启发的合成增强激酶工具包。
Aspire Group 致力于公平合理地缴纳我们经营所在国家的税款。对于国际实体贸易,我们将在适当的外部审查和基准分析的支持下,实施严格的转让定价政策。我们认为,公平征税对于促进长期业务可持续性以及为公共服务和社会福祉做出贡献至关重要。我们的征税方法与我们的企业价值观一致,我们积极确保我们不采取可能破坏我们经营的经济体系的激进避税策略。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
