当前的工作符合 CF 领域正在进行的努力,旨在满足所谓“最后 10%”的高度未满足的医疗需求,即 pwCF,根据其特定的基因型,这些患者不适合 HEMT 并且处于前调节剂时代。除了严重的错义突变之外,这些基因型还包括剪接、插入或缺失 (indel) 或无义突变,从机制上来说,预计这些突变不会对任何当前或未来的调节剂疗法产生反应。为了解决这一未满足的医疗需求,CF 领域努力研究基因添加和基因编辑方法(见表 1)。事实上,自从 HEMT 最常见的突变 F508del 以及门控和残留功能突变获得临床批准以来,药物难治性突变一直是研究的重中之重(见表 1)。 c.3718-2477C>T 是一种残留功能突变,携带此类突变的 pwCF 现在有资格获得美国批准的 CFTR 调节剂(https://www.fda.gov/)。6 在欧洲,只有携带突变与 F508del 等位基因结合的 pwCF 才有资格获得 Symkevi(tezacaftor/ivacaftor)
替代剪接(AS)是真核生物中进化保守的细胞过程,其中从单个基因中产生了多个Messenger RNA(mRNA)转录本。随着增加转录组复杂性和蛋白质组多样性的概念,它引入了一种新的观点,以理解植物病诱导的宿主变化作为原因疾病。最近,人们已经认识到,在寄生,共同和符号相互作用期间代表了植物免疫系统的组成部分。在这里,我提供了最近的进展概述,详细介绍了植物病的重编程以及疾病表型的功能性影响。此外,我讨论了免疫受体在调节植物免疫中的重要功能,以及phy-topathogen如何使用效应子蛋白来靶向剪接机械的关键成分,并利用免疫调节剂的交替剪接变体来否定防御反应。最后,在植物 - 病原体界面的背景下,AS和废话介导的mRNA衰变之间的功能关联被概括。
附属机构:1 丹娜—法伯癌症研究所肿瘤内科系,美国马萨诸塞州波士顿 02215。2 麻省理工学院和哈佛大学布罗德研究所,美国马萨诸塞州剑桥 02142,美国马萨诸塞州剑桥 02142。3 哈佛医学院布拉瓦尼克研究所生物化学和分子药理学系,美国马萨诸塞州波士顿 02115。4 哈佛医学院路德维希中心,美国马萨诸塞州波士顿 02115。5 纪念斯隆凯特琳癌症中心人类肿瘤学和发病机制项目,美国纽约州纽约 10021。6 迈阿密大学米勒医学院西尔维斯特综合癌症中心医学系血液学分部,美国佛罗里达州迈阿密 33136。7 H3 Biomedicine, Inc.,美国马萨诸塞州剑桥 300 Technology Square 02139。 8 丹娜法伯癌症研究所病理学系;美国马萨诸塞州波士顿 02215。
腺苷到肌苷的 RNA 编辑和前 mRNA 剪接主要在转录过程中发生并相互影响。在这里,我们使用缺乏两种编辑酶 ADAR(ADAR1)或 ADARB1(ADAR2)之一的小鼠来确定 RNA 编辑对不同组织剪接的转录组范围影响。我们发现 ADAR 对剪接的影响比 ADARB1 高 100 倍,尽管这两种酶都靶向相似数量的底物,并且有很大的共同重叠。一致地,差异剪接区域经常包含 ADAR 编辑位点。此外,催化失活的 ADAR 也会影响剪接,表明 ADAR 的 RNA 结合会影响剪接。相反,ADARB1 编辑位点在差异剪接区域的 5' 处富集。这些 ADARB1 介导的编辑事件中的几个会改变剪接共识序列,因此强烈影响某些 mRNA 的剪接。差异编辑位点和差异剪接位点之间的显著重叠表明,剪接的进化选择受到组织特异性编辑的调控。
Eric Wang, 1, 10, * Jose Mario Bello Pineda, 2, 3, 4, 10 Won Jun Kim, 5, 10 Sisi Chen, 5 Jessie Bourcier, 5 Maximilian Stahl, 6 Simon J. Hogg, 5 Jan Phillipp Bewersdorf, 5 Cuijuan Han, 1 Michael E. Singer, 5 Daniel Cui, 5 Caroline E. Erickson, 5 Steven M. Tittley, 5 Alexander V. Penson, 5 Katherine Knorr, 5 Robert F. Stanley, 5 Jahan Rahman, 5 Gnana Krishnamoorthy, 7, 8 James A. Fagin, 7, 8 Emily Creger, 9 Elizabeth McMillan, 9 Chi-Ching Mak, 9 Matthew Jarvis, 9 Carine Bossard, 9 Darrin M. Beaupre, 9 Robert K. Bradley, 2 , 3 , * 和 Omar Abdel-Wahab 5 , 11 , * 1 杰克逊基因组医学实验室,美国康涅狄格州法明顿 06032 2 美国华盛顿州西雅图弗雷德哈钦森癌症研究中心公共卫生科学和基础科学部 3 美国华盛顿州西雅图华盛顿大学基因组科学系 4 美国华盛顿州西雅图华盛顿大学医学科学家培训计划 5 美国纽约州纽约市纪念斯隆凯特琳癌症中心斯隆凯特琳研究所分子药理学项目 6 美国马萨诸塞州波士顿丹娜—法伯癌症研究所肿瘤内科系 7 美国纽约州纽约市纪念斯隆凯特琳癌症中心人类肿瘤学和发病机制项目 8 美国纽约州纽约市纪念斯隆凯特琳癌症中心医学系、内分泌学分部 9 Biosplice Therapeutics Inc.,美国加利福尼亚州圣地亚哥 10 这些作者贡献相同 11 主要联系人 *通信地址:eric.wang@jax.org (EW)、rbradley@fredhutch.org (RKB)、abdelwao@mskcc.org (OA-W.) https://doi.org/10.1016/j.ccell.2022.12.002
剪接因子受几种血液和实体恶性肿瘤中复发性体细胞突变和拷贝数变异的影响,这通常被视为剪接异常可驱动癌症发生和发展的初步证据。然而,许多剪接体成分也在 DNA 修复和其他细胞过程中“兼职”,因此很难确定它们在癌症中的确切作用。尽管如此,很少有人会否认,失调的 mRNA 剪接是大多数癌症的普遍特征。正确解释这些分子指纹可以揭示新的肿瘤弱点和尚未开发的治疗机会。然而,多重技术挑战、挥之不去的误解和悬而未决的问题阻碍了临床转化。首先,由于短读 RNA 测序的局限性(不擅长解析完整的 mRNA 异构体),以及长读 RNA 测序固有的浅读深度(尤其是在单细胞水平上),癌症中剪接异常的总体情况尚不明确。尽管已知个别癌症相关亚型会促进癌症进展,但广泛的剪接变异可能同样重要,而且可能更容易对人类癌症采取行动。也就是说,除了“修复”错误剪接的转录本外,可能的治疗途径还包括使用小分子剪接体抑制剂加剧剪接畸变、使用合成致死方法靶向复发性剪接畸变以及训练免疫系统识别剪接衍生的新抗原。
1 Leloir Instit,布宜诺斯艾利斯 - 国际科学与技术研究理事会(CONICET),布宜诺斯艾利斯C1405BWE,阿根廷2生理学,分子生物学和神经科学研究所(Ifibyne-uba-uba-conicet)(ifibyne-uba-conicet)(ifibyne-buba-conicet)和天然科学的科学杂志,生物学和分子生理学,生物学教师,生物菲尔德大学,比尔 - 菲尔德大学33615,德国4分子生物学系,麦克斯·普朗克生物学研究所,蒂宾根72076,德国72076,德国5分子和细胞生物学研究所(CSIC-POLITECEA)(CSIC-POLITECEA),SPIELITEA GRUTIONEA 4660222222222222222.大学,UMEA SE-901 87,瑞典
摘要:下一代测序 (NGS) 的出现促进了不同病理学中基因表达分析的基本分析策略的转变,这些分析可用于研究、药理学和个性化医疗。从基因表达阵列时代开始,曾经高度集中于单个信号通路或通路成员的研究已经变成了对基因表达的全局分析,有助于识别新的通路相互作用、发现新的治疗靶点以及建立疾病相关性图谱以评估进展、分层或治疗反应。但是,这种分析存在一些重大缺陷,无法构建完整的图景。由于缺乏对公共数据库的及时更新以及科学数据“随意”地存放到这些数据库中,大量可能重要的数据被归为“垃圾”,这不禁让人想问:“我们到底错过了多少?”这个简短的观点旨在强调 RNA 结合/修饰蛋白和 RNA 处理对我们当前使用 NGS 技术治疗癌症所带来的一些限制,以及不充分认识到当前 NGS 技术的局限性可能会对长期治疗策略产生负面影响。
、闫彤 1 、陈浩然 1 、王嘉华 1 、王英怡 4 、杨叶琴 5 、项略 1 、池在龙 1 、任开群 2 、林斌 6 、林戈 7,8 、李劲松 3,4 、刘勇 1,* 和顾锋 1,2,9,* 来自 1 温州医科大学附属眼视光学院、卫生部视觉科学国家重点实验室、卫生部重点实验室和浙江省眼视光重点实验室,浙江省温州;2 湖南师范大学医学院、湖南省模式动物与干细胞生物学重点实验室、生殖与转化医学湖南省工程研究中心,长沙,中国; 3 中国科学院上海生物化学与细胞生物学研究所、上海分子男科学重点实验室、细胞生物学国家重点实验室、分子细胞科学卓越中心,上海,中国;4 上海科技大学生命科学与技术学院,上海,中国;5 浙江中医药大学护理学院,浙江杭州,中国;6 香港理工大学眼科视光学院,香港,中国;7 中信湘雅生殖与遗传医院,湖南省生殖与遗传临床研究中心,长沙,中国;8 中南大学基础医学院生殖与干细胞工程研究所,长沙,中国;9 湖南师范大学附属广秀医院(湖南广秀医院),长沙,中国