抽象的咀嚼棒和海绵用于加纳和其他非洲国家的口腔卫生。除了可负担性外,它们还具有抗微生物和Ti-Plague特性的其他优势。它们通常在较低的卫生条件下在公开市场上出售,使它们暴露于环境病原体中。由于使用前大多未对其进行灭菌,因此筛查存在对随机选择的样品的重要性重要性很重要。这项初步研究使用了分子测定法对轮状病毒A,Salella Typhi,Vibrio Cholerae和Escherichia Coli进行筛选10个咀嚼棒和海绵样品,从Accra的Agbogbloshie市场随机购买。在室温下将样品在无菌蒸馏水中孵育过夜,以清除病原体。脱落的病原体。使用RADI Prep DNA/RNA试剂盒从浓缩物中提取总核酸。使用2X SYBR绿色混合物和病原体特异性引物进行所有PCR分析。在筛查的四种病原体中,仅检测到大肠杆菌(分别为40%和60%的咀嚼海绵和棍子样品)。尽管咀嚼棍棒和海绵具有优势,但在样品上检测大肠杆菌是引起关注的原因,因为它们表明粪便污染并可能引起腹泻疾病。建议在用于口腔健康之前清洁咀嚼棒和海绵。另一种选择是培训当地生产商和零售商,以改善这些基本清洁剂的卫生包装老化和处理。
Agersnap, S.、Sigsgaard, EE、Jensen, MR、Avila, MDP、Carl, H.、Møller, PR、Krøs, SL、Knudsen, SW、Wisz, MS 和 Thomsen, PF (2022)。利用公民科学和 eDNA 宏条形码监测沿海海洋鱼类的国家级“生物多样性调查”。海洋科学前沿,第 9 卷,第 1-17 页。Altschul, SF、Gish, W.、Miller, W.、Myers, EW 和 Lipman, DJ (1990)。基本局部比对搜索工具。分子生物学杂志,第 215 卷,第 403-410 页。Ashelford, KE、Chuzhanova, NA、Fry, JC、Jones, AJ 和 Weightman, AJ (2005)。据估计,目前公共存储库中保存的 20 个 16S rRNA 序列记录中至少有 1 个包含大量异常。应用与环境微生物学,71,7724–7736。Auster, PJ (2005)。深水珊瑚是鱼类的重要栖息地吗?在 A. Freiwald 和 JM Roberts(编辑),冷水珊瑚和生态系统(第 747–760 页)。Springer Berlin Heidelberg。https://doi. org/10.1007/3–540–27673-4 Beng, KC 和 Corlett, RT (2020)。环境 DNA (eDNA) 在生态学和保护中的应用:机遇、挑战和前景。生物多样性与保护,29,2089–2121。Benson, DA (2004)。GenBank。核酸研究,33,34–38。Bessey, C.、Neil Jarman, S.、Simpson, T.、Miller, H.、Stewart, T.、Kenneth Keesing, J. 和 Berry, O. (2021)。被动式 eDNA 收集可增强水生生物多样性分析。通讯生物学,4,236。Brandt, MI、Pradillon, F.、Trouche, B.、Henry, N.、Liautard-Haag, C.、Cambon-Bonavita, MA、Cueff-Gauchard, V.、Wincker, P.、Belser, C.、Poulain, J.、Arnaud-Haond, S. 和 Zeppilli, D. (2021)。评估使用环境 DNA 估计深海生物多样性的沉积物和水采样方法。科学报告,11,7856。 Brodnicke, O.、Meyer, H.、Busch, K.、Xavier, J.、Knudsen, S.、Møller, P.、Hentschel, U. 和 Sweet, M. (2022)。出版物的采样元数据:“深海海绵衍生的环境 DNA 分析揭示了偏远北极生态系统的底栖鱼类生物多样性”。Zenodo。https://doi.org/10.5281/zenodo.7326708 Burian, A.、Mauvisseau, Q.、Bulling, M.、Domisch, S.、Qian, S. 和 Sweet, M. (2021)。提高 eDNA 数据解释的可靠性。分子生态资源,21,1422–1433。 Busch, K., Beazley, L., Kenchington, E., Whoriskey, F., Slaby, BM, & Hentschel, U. (2020). 玻璃海绵 Vazella pourtalesii 的微生物多样性对人类活动的响应。保护遗传学,21,1001–1010。Busch, K., Hanz, U., Mienis, F., Mueller, B., Franke, A., Roberts, EM, Rapp, HT, & Hentschel, U. (2020). 站在巨人的肩膀上:海山如何影响海水和海绵的微生物群落组成。生物地球科学,17,3471–3486。 Busch, K.、Slaby, BM、Bach, W.、Boetius, A.、Clefsen, I.、Colaço, A.、Creemers, M.、Cristobo, J.、Federwisch, L.、Franke, A.、Gavriilidou, A.,Hethke, A., Kenchington, E., Mienis, F., Mills, S., Riesgo, A., Ríos, P., Roberts, EM, Sipkema, D., … Hentschel, U. (2022)。全球深海海绵微生物组的生物多样性、环境驱动因素和可持续性。《自然通讯》,第 13 卷,第 5160 页。Cai, W., Harper, LR, Neave, EF, Shum, P., Craggs, J., Arias, MB, Riesgo, A., & Mariani, S. (2022)。圈养海绵中的环境 DNA 持久性和鱼类检测。《分子生态资源》,第 22 卷,第 2956-2966 页。Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJA, & Holmes, SP (2016)。 DADA2:从 Illumina 扩增子数据进行高分辨率样本推断。《自然方法》,13,581–583。Cárdenas, P.、Rapp, HT、Klitgaard, AB、Best, M.、Thollesson, M. 和 Tendal, OS (2013)。分类学、生物地理学和 DNA 条形码
在表面上的聚合细胞外基质可以抑制抗生素的渗透,从而使其比浮游细胞更具耐药性[1-3]。除了修改现有药物外,研究人员还通过探索海洋生物来寻找新的抗生素。由于海洋占地约70%,因此与陆生物相比,海洋环境具有更大的生物多样性,并且含有非常有希望的生物活性化合物可以探索。海洋生物的寿命取决于其周围环境条件,例如温度,光,盐度,压力和栖息地的深度。它们具有不同的进化系统,代谢途径和生态学[4,5],这会导致独特的化学组成,复杂性和生物学功效[6,7]。
在设计药物输送系统时,研究人员主要专注于在目标部位提供准确的药物。这样,通过使用现代纳米技术来利用许多方法,这在其方式上被证明是最好的。1纳米技术是科学的一个分支,在纳米级使用纳米材料来创建具有先进特征和改进特性的纳米工程产品,尺寸范围为1至100 nm。十亿分之一是纳米。纳米材料是物理化合物,至少在1至100 nm的范围内。2这些NP在多种不同的形状中观察到,包括聚合物纳米颗粒,硬磷脂纳米颗粒,纳米乳液,树枝状聚合物,纳米体,脂质体,脂质体,碳纳米管,胶束系统等3在这方面,纳米技术在医学领域中的使用正在通过更精确的药理药物治疗或“智能药物”过渡到“活跃结构”,或者是通过将某些配体耦合到纳米载体或适当性的“智能药物”。可以将多种药物(如抗真菌,抗病毒,抗癌,挥发性油,气体,蛋白质和肽)固定在称为纳米杂物的胶体纳米含量结构中。
摘要通过在营养较差的环境中提供和回收必需营养物质,海绵微生物组基础宿主功能。基因组数据表明,碳水化合物降解,碳固定,氮代谢,硫代谢和补充B-维生素是中央微生物功能。然而,很少探索海绵共生途径的基因组潜力的验证。为了评估宏基因组预测,我们测序了三个常见的珊瑚礁海绵的宏基因组和元文字:ircinia ramosa,ircinia ramosa,ircinia microconulosa和phyllospongia foliascens。多种碳水化合物活性酶通过猪杆菌,细菌和氰基菌群共生菌表达,这表明这些谱系在吸收溶解的有机物中具有核心作用。在所有海绵中都观察到了碳固定和多硫化合物转化的整个途径的表达。厌氧氮代谢(反硝化和硝酸盐还原)的基因表达比有氧代谢(硝酸盐)更常见,其中只有I. ramosa微生物组表达了硝化途径。最后,虽然B-VITAMIN的生物合成途径的表达很常见,但其他转运蛋白基因的表达受到了限制。总的来说,我们强调了元基因组和
海绵是现存的最早的分支动物之一。因此,该组的遗传数据对于理解其他动物的各种特征和过程的EVO非常有价值。但是,像许多海洋生物一样,它们很难对它们进行顺序,因此基因组数据很少。在这里,我们从瑞典西海岸收集的一个人Geodia Barretti Bowerbank 1858年为北大西洋深海高微生物舞蹈物种Geodia Barretti Bowerbank介绍了基因组议会草案。核基因组组件具有4,535个支架,N50的48,447 bp和144 MB的总长度;线粒体基因组长17,996 bp。BUSCO完整性为71.5%。使用从头算和基于证据的方法的组合发现了31,884个蛋白质编码基因。
众所周知,微生物在海绵中占丰富,占宿主生物量的50%-60%。越来越多的证据表明,与海绵相关的细菌,真菌和蓝细菌都是从海绵中鉴定出的生物活性化合物的真正创造者。发现从1998年到2017年发现774种结构活性化合物,对海绵相关微生物的天然产品资源进行了很好的概述。During the last 5 years, many new molecules, including peptides, polyketides, alkaloids, and terpenes, have been identi fi ed from sponge-associated microorganisms through various mining strategies, exhibiting a wide range of biological activities, such as anti-microbial, anti-cancer, enzyme inhibition, and antioxidant properties.In this paper, 140 compounds produced by sponge-associated microorganisms from 2017 to 2022 are systematically discussed in terms of their structures, biological activities, and strain sources, as well as the mining strategies, which not only further updates the natural product library of sponge-associated microorganisms but also provides a new guideline for exploring the “ dark matter ” in sponges.
靶向药物输送系统的创建是纳米技术最新进展的结果。然而,使用药物输送系统有效地将分子靶向到特定位置需要专门的药物输送系统。由于纳米海绵可以容纳亲水性和疏水性药物,因此纳米海绵的开发已被证明是克服药物毒性、生物利用度低和药物释放可预测等问题的关键一步。纳米海绵的多孔形状使其具有独特的能力,可以捕获药物分子,同时提供释放药物的好处。纳米海绵是一种微小的海绵,可以在体内移动,与药物表面结合,并以受控和可预测的方式释放药物。通过将环糊精与羰基或二羧酸盐交联,可以创建纳米海绵(交联剂)。为了输送口服、外用和肠外给药的药物,纳米海绵技术得到了广泛的研究。疫苗、抗体、蛋白质和酶都可以通过纳米海绵有效地运输。本文重点介绍了制备过程、特性及其在药物输送系统中的可能应用。
背景:近年来,LncRNA作为竞争性内源性RNA(ceRNA)的一员,在肺癌耐药中发挥着重要作用。本研究旨在利用全面的ceRNA网络识别顺铂耐药肺癌细胞的潜在生物标志物。方法:GSE6410(GPL-201)分析了A549 NSCLC细胞中顺铂耐药基因表达变化。GSE43249(GPL-14613)包括源自顺铂耐药A549肺细胞的非编码RNA表达谱。在线分析工具GEO2R分析了差异表达的mRNA和miRNA(DEmRNA和DEmiRNA)。为了探索差异表达mRNA的功能富集意义,我们使用了GO(基因本体)和KEGG(京都基因和基因组百科全书)通路分析。通过 miRDB、Targetscan、Starbase 和 miRWalk 寻找靶向 miRNA,采用 Kaplan-Meier 曲线法对靶向 RNA 的临床生存率进行分析( P<0.05),Starbase 数据库预测了潜在的 lncRNA 介导的靶向 miRNA。最后利用 cytoscape3.7.2 构建了 lncRNA、miRNA、mRNA 的新型 ceRNA 网络。结果:118 个差异表达的 mRNA 构成了介导的 ceRNA 网络的基础。DAVID 和 Kaplan-Meier 筛选出凋亡调节因子 BAX,维恩图显示 8 个 miRNA 共同调控 BAX。Starbase 预测 lncRNA XIST 介导的 miRNA。最后,lncRNA XIST 可能是调节肺癌细胞顺铂耐药性的有用生物标志物,进一步探讨了 BAX 可能影响肿瘤浸润免疫细胞。结论:LncRNA XIST在BAX调控顺铂耐药过程中与miRNA 520竞争性结合,参与p53信号通路引起细胞凋亡。