摘要:自然生物材料是由自组装过程形成的,并催化了无数的反应。在这里,我们报告了具有工程细菌孢子的设计合成聚合物的程序组合组件。这种自组装过程是由孢子表面聚糖的动态共价形成驱动的,并产生结构稳定,自我修复和可回收的宏观材料。mo-ncular编程塑造了这些材料的物理特性,而代谢性休眠的孢子则可以进行较长的环境储存。具有遗传编码功能的孢子掺入可以使操作简单且重复的酶促催化。我们的工作为可持续生物催化的强大材料可扩展和可编程合成奠定了重要的基础。
药物治疗类别:止泻微生物 Enterogermina ® 是一种制剂,由 4 种克劳氏芽孢杆菌孢子菌株(SIN、O/C、T、N/R)的悬浮液组成,这些菌株天然存在于肠道中,无致病性。口服时,克劳氏芽孢杆菌孢子由于对化学和物理因素具有很强的抵抗力,可穿过酸性胃液屏障,毫发无损地到达肠道,在那里转化为具有代谢活性的营养细胞。孢子天生就能在高温和胃酸中存活。在体外验证模型中,克劳氏芽孢杆菌孢子可在模拟胃环境(pH 1.4-1.5)中存活长达 120 分钟(存活率为 96%)。在模拟肠道环境(胆汁和胰酶盐水 - pH 8)的模型中,克劳氏芽孢杆菌孢子表现出进一步繁殖的能力
摘要:这项研究研究了使用可以在动物肠道中生长的厌氧细菌直接生产和利用动物肠道中有用物质的可能性。从干草中分离出大量α-葡萄糖苷酶抑制剂的辅助厌食症,并鉴定出哥格拉氏杆菌CC。将肠杆菌CC产生的α-葡萄糖苷酶抑制剂的主要化合物鉴定为1-脱氧诺二霉素。α-葡萄糖苷酶抑制剂的活性在口服这种菌株的肠含量和粪便中得到了结合,并且可以证实,该菌株可以有效地到达肠道,扩散,并产生α-戊糖苷酶抑制剂。由于每1千克体重的孢子以10 9个细胞为小鼠施用小鼠,持续8周,高碳水化合物饮食和高脂饮食显示与非隔热组相比,体重增加了5%。在这一点上,在孢子施用的组中,与计算机断层摄影术的非高级饮食组相比,高碳水化合物和高脂饮食组的内脏和皮下脂肪层和胸腔的内脏和皮下脂肪层都降低。这项研究的结果表明,通过特定菌株在肠中产生的α-葡萄糖苷酶抑制剂可以有效地发挥作用。
图 1. 通过靶向 HER2 阳性细胞的 SSHEL 递送阿霉素可减轻小鼠肿瘤异种移植模型中的肿瘤负担。 (A) SSHEL 粒子组装示意图。 1 µm 直径的介孔二氧化硅珠 (灰色,SiO 2 ) 装载货物 (阿霉素,红色),然后将脂质双层 (磷脂酰胆碱) 应用于表面 (黄色) 以创建货物包裹的球形支撑脂质双层 (SSLB)。 然后将 SSLB 与 SpoVM 肽 (蓝色) 和 SpoIVA 蛋白 (绿色) 和 ATP 一起孵育以促进 SpoIVA 聚合。 插图:SpoIVA 含有与反式环辛烯 (TCO) 结合的工程 Cys。与同源点击化学分子四嗪结合的抗 HER2 亲和体 (蓝色星号) 孵育会形成共价二氢哒嗪键,从而导致亲和体显示在 SSHEL 表面。(B) 显示用 Alexa Fluor 488 (AF488) 荧光染料标记的共价连接亲和体的 SSHEL 的荧光显微照片。左图:使用 DIC 可视化的 SSHEL;右图:来自 AF488 的荧光。(C) 使用流式细胞术测量显示抗 HER2 AF488 (绿色) 的 SSHEL 的荧光,并与显示已知数量的等效可溶性荧光染料分子 (MESF) 的珠子产生的荧光进行比较,以计算每个 SSHEL 颗粒显示的抗 HER2 AF488 的数量。(D) 用 SpoIVA AF488 制成的载阿霉素 SSHEL 的荧光显微照片。左上:DIC;右上:SpoIVA AF488 的荧光;左下:阿霉素的荧光;右下:叠加,阿霉素和 SpoIVA AF488 。B 和 D 中的比例尺:1 µm。(EF)无胸腺裸鼠皮下(sc)接种 SKOV3 HER2 阳性卵巢癌细胞。当肿瘤体积达到 ~100 mm 3 时,在异种移植后的几天内,用 PBS(黑色圆圈)、(E) 60 µg 或 (F) 120 µg 阿霉素(红色方块)、含有等效剂量阿霉素的载阿霉素 SSHEL(绿色三角形)或不含货物的等效数量 SSHEL(蓝色倒三角形)对小鼠进行静脉内 (iv) 治疗,箭头所示(试验 1 为 18、21、25、28、32、35、39、43、46、50、54;试验 2 为 13、16、20、23、27、30、34、37),并测量肿瘤体积。数据点代表平均值;误差为 SD;n=7 只小鼠。P 值:*<.05;****<.001。 (GH) 分别在 (G) 第 60 天、(H) 第 41 天 (H,左) 或第 47 天 (H,右) 从 (EF) 小鼠体内切除的肿瘤。红色星号:溃疡肿瘤;蓝色星号:肿瘤 >1500 mm 3 ;橙色星号:从体重减轻 >10% 的小鼠体内切除的肿瘤。比例尺:10 mm。
摘要枯草杆菌长期以来一直是基础研究的重要主题。然而,由于其易于遗传操作,大规模费用的培养特征,蛋白质分泌的较高能力,并且通常被认为是安全的(GRAS)状态,因此该生物也具有工业应用。此外,作为枯草芽孢杆菌的代谢休眠形式,由于它们对许多环境压力的极大抵抗,其孢子引起了极大的兴趣,这使得孢子成为各种应用的新型平台。在这种情况下,我们总结了枯草芽孢杆菌孢子的常规和新兴应用,重点是它们独特的特征如何导致许多技术领域的创新性,包括生成稳定和可回收酶,合成生物学,药物,药物和材料科学。最终,这种重新观察希望激发科学界利用孢子来利用跨学科的学科来解决全球对粮食短缺,环境保护和医疗保健的关注。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:开发了一种采用 Percoll™ 梯度离心法从大西洋鲑 Salmo salar 的体肌组织中纯化 Kudoa thyrsites 孢子的方法。然后用高度纯化的孢子免疫近交系 BALB/c 小鼠,以衍生分泌 Kudoa 特异性单克隆抗体 (mAb) 的杂交瘤。通过免疫荧光显微镜和流式细胞术对 mAb 进行分析表明,几种 mAb 对 K. thyrsites 孢子表面的抗原具有特异性,而其他 mAb 与 K. thyrsites、K. paniformis 和 K. crumena 孢子的极性荚膜或极性细丝发生反应。使用表面结合 mAb 对孢子裂解物进行免疫印迹,结果显示 46 至 >220 kDa 的宽条带,而针对极性荚膜和极性细丝抗原的特异性 mAb 检测到不同分子量的更清晰条带,具体取决于 Kudoa 物种。K. thyrsites 孢子表面抗原的主要表位被证明是碳水化合物,这是由其对无水三氟甲烷磺酸处理的敏感性和对蛋白酶 K 处理的抗性决定的。使用 K. thyrsites 特异性 mAb 对分离的、完整的、透化的疟原虫和含有疟原虫的体细胞肌肉组织薄切片进行免疫荧光显微镜检查,发现在产生孢子的疟原虫和受感染的大西洋鲑鱼肉中都有孢子的强烈标记。通过免疫印迹法检测到的孢子只有 100 个,表明这些 mAb 具有用于开发基于现场的诊断测试的潜力。
农业杀菌剂污染构成了重大的环境挑战,并对人类健康造成了不利影响。因此,限制杀菌剂使用的策略至关重要。trichoderma真菌由于其对各种致病真菌的拮抗活性,已显示出具有化学杀菌剂的可持续替代品的潜力。然而,像Trichoderma这样的生物控制剂容易受到物理刺激的影响,并且在延长储存过程中显示出效率减少。为了应对这些挑战,使用生物蛋白衍生物采用逐层(LBL)方法引入了一种轻度且可扩展的封装方法,采用逐层(LBL)方法。证明,LBL封装技术相对于裸孢子显着改善的孢子稳定性,即使在不利条件下,包括极端温度和长时间暴露于紫外线(UV)辐射。值得注意的是,与裸孢子相比,封装的毛胚孢子在种植番茄植物方面表现出增强的效率。此外,发现显示,封装的孢子的植物效率取决于所使用的特定的毛状菌株。这项研究表明,通过LBL方法封装用木质素的毛虫孢子是具有商业化潜力的化学杀真菌剂的有前途且可持续的替代品。
直接加热灭菌循环 – 140°C 下 120 分钟 – 确保消除每个培养箱表面的所有微生物和真菌孢子 (ANSI/AAMI/ISO 11134)。此声明已通过针对干热过程校准的枯草芽孢杆菌孢子悬浮液得到验证,因为这些孢子对干热灭菌的抵抗力最强,因此是推荐的指示生物 (美国药典,ch.1035)。施加到培养箱不同表面的所有孢子 – 腔壁 (不锈钢)、门 (玻璃) 和门垫圈 (钢化硅胶),在 140°C 下 120 分钟的灭菌循环后已被可靠地消除。
直接加热灭菌循环 – 140°C 下 120 分钟 – 确保消除每个培养箱表面的所有微生物和真菌孢子 (ANSI/AAMI/ISO 11134)。此声明已通过针对干热过程校准的枯草芽孢杆菌孢子悬浮液得到验证,因为这些孢子对干热灭菌具有最强的抵抗力,因此是推荐的指示生物(美国药典,第 1035 章)。在 140°C 下 120 分钟的灭菌循环后,施加到培养箱不同表面的所有孢子 – 腔壁(不锈钢)、门(玻璃)和门垫圈(钢化硅胶)都已可靠地消除。