摘要:近年来,多元同步指数(MSI)算法作为一种新的频率检测方法,在基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)研究中受到越来越多的关注。然而,MSI算法难以充分利用脑电图(EEG)中与SSVEP相关的谐波分量,限制了MSI算法在BCI系统中的应用。在本文中,我们提出了一种新的滤波器组驱动的MSI算法(FBMSI)来克服该限制并进一步提高SSVEP识别的准确性。我们通过开发一个6命令SSVEP-NAO机器人系统并进行大量实验分析来评估FBMSI方法的有效性。首先使用从9名受试者采集的EEG进行离线实验研究,以研究不同参数对模型性能的影响。离线结果表明,所提出的方法取得了稳定的改进效果。我们进一步对六名受试者进行了在线实验,以评估所开发的 FBMSI 算法在实时 BCI 应用中的效果。在线实验结果表明,FBMSI 算法使用仅一秒的数据长度即可获得 83.56% 的平均准确率,比标准 MSI 算法高出 12.26%。这些广泛的实验结果证实了 FBMSI 算法在 SSVEP 识别中的有效性,并展示了其在改进的 BCI 系统开发中的潜在应用。
摘要 —脑电图 (EEG) 因其便携性、高时间分辨率、易于使用和低成本而被广泛应用于脑机接口 (BCI),使瘫痪者能够直接与外部设备通信和控制外部设备。在各种 EEG 范式中,基于稳态视觉诱发电位 (SSVEP) 的 BCI 系统使用以不同频率闪烁的多个视觉刺激(例如计算机屏幕上的 LED 或盒子)由于其快速的通信速率和高信噪比在过去几十年中得到了广泛的探索。在本文中,我们回顾了基于 SSVEP 的 BCI 的当前研究,重点关注能够连续、准确检测 SSVEP 并因此实现高信息传输速率的数据分析。本文描述了主要的技术挑战,包括信号预处理、频谱分析、信号分解、空间滤波特别是典型相关分析及其变体和分类技术。还讨论了自发性大脑活动、心理疲劳、迁移学习以及混合 BCI 方面的研究挑战和机遇。
İfĉāmicāë0ë0údk3m7m7mbgn <3Mbgn <3Mbgn <3Mbgn <3Mbgn <3mbgn = 〜3m = 〜3℺«c«c«c«c«c«c«c«c。 Åħ}。 ib¾hs² -2ij2 - #ijzë -ę[0平均ģ+。 u#nd $ 1avos_tvoīð²±ijzó¾hõ¾hõ«0la£out- O - *tr 2 tr 2 tr 2 tr 2! \äę[0úmñ«â€™tâzë -tâ\ \ääääääääääisúëúëúëâ#j#ândzá - *,Øsâo n o n o n onij ssvep \ä0č»ù¼ijċčmñmï-\ässvep \äOiijzë--\ä /¾hâtome -į 1/4ij½½的3¾hs。
摘要 肌萎缩侧索硬化症 (ALS) 患者最终会患上完全闭锁综合征 (TLS),这种情况下他们甚至无法移动眼睛。这些患者与周围的人交流极其困难。为了改善他们的生活质量,脑机接口 (BCI) 作为一种替代通信系统引起了人们的关注。在本文中,我们研究了使用稳态视觉诱发电位 (SSVEP) 作为刺激的 BCI。机器学习的脑电图分类通常用于基于 SSVEP 的 BCI 数据处理。然而,提取
脑电图(EEG)是脑机接口(BCI)系统中最常用的方法之一。基于EEG的BCI系统可以利用外部设备恢复神经肌肉系统。放置在头皮上的电极记录的脑脉冲被转换成控制机械臂、外骨骼、轮椅或其他机器人的命令。在基于EEG的BCI中,有许多范式,例如基于事件相关去同步/同步(ERD / ERS)的运动想象(MI),称为感觉运动节律(SMR),基于体感的感觉想象,注意定向电位(SAO),稳态视觉诱发电位(SSVEP),稳态体感诱发电位(SSSEP),P300电位和慢皮质电位(SCP)。
在本研究中,我们提出了一种用于基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的新型混合视觉刺激,该刺激将各种周期性运动融入传统的闪烁刺激 (FS) 或模式反转刺激 (PRS)。此外,我们研究了每种 FS 和 PRS 的最佳周期运动,以增强基于 SSVEP 的 BCI 的性能。通过根据四个不同的时间函数(用无、平方、三角和正弦表示)改变刺激的大小来实现周期性运动,总共产生八种混合视觉刺激。此外,我们开发了滤波器组典型相关分析 (FBCCA) 的扩展版本,这是一种用于基于 SSVEP 的 BCI 的最先进的无需训练分类算法,可提高基于 PRS 的混合视觉刺激的分类准确性。 20 名健康个体参加了基于 SSVEP 的 BCI 实验,以区分四种不同频率的视觉刺激。评估了平均分类准确率和信息传输率 (ITR),以比较基于 SSVEP 的 BCI 对不同混合视觉刺激的性能。此外,还评估了用户对每种混合视觉刺激的视觉疲劳程度。结果,对于 FS,当除 3 秒外的所有窗口大小都加入正弦波形的周期运动时,报告的性能最高。对于 PRS,方波的周期运动在所有测试窗口大小中显示出最高的分类准确率。两种最佳刺激之间的性能没有观察到显著的统计差异。据报道,正弦波周期运动的 FS 和方波周期运动的 PRS 的平均疲劳分数分别为 5.3 ± 2.05 和 4.05 ± 1.28。因此,我们的结果表明,与传统的 FS 和 PRS 相比,具有正弦波周期运动的 FS 和具有方波周期运动的 PRS 可以有效提高 BCI 性能。
基于脑电图 (EEG) 的脑机接口 (BCI) 近来在虚拟现实 (VR) 应用中引起越来越多的关注,成为一种有前途的工具,可以“免提”方式控制虚拟物体或生成命令。视频眼动图 (VOG) 经常被用作一种工具,通过识别屏幕上的注视位置来提高 BCI 性能,然而,当前的 VOG 设备通常过于昂贵,无法嵌入到实用的低成本 VR 头戴式显示器 (HMD) 系统中。在本研究中,我们提出了一种新颖的免校准混合 BCI 系统,该系统结合了基于稳态视觉诱发电位 (SSVEP) 的 BCI 和基于眼电图 (EOG) 的眼动追踪,以提高 VR 环境中九目标基于 SSVEP 的 BCI 的信息传输速率 (ITR)。在以 3×3 矩阵排列的三种不同频率配置的模式反转棋盘格刺激上重复实验。当用户注视九种视觉刺激中的一种时,首先根据用户的水平眼球运动方向(左、中或右)识别包含目标刺激的列,并使用从一对电极记录的水平 EOG 进行分类,该电极可以很容易地与任何现有的 VR-HMD 系统结合使用。请注意,与 VOG 系统不同,可以使用与记录 SSVEP 相同的放大器来记录 EOG。然后,使用多元同步指数 (EMSI) 算法的扩展(广泛使用的 SSVEP 检测算法之一)在选定列中垂直排列的三个视觉刺激中识别目标视觉刺激。在我们对 20 名佩戴商用 VR-HMD 系统的参与者进行的实验中,结果表明,与 VR 环境中基于传统 SSVEP 的 BCI 相比,所提出的混合 BCI 的准确度和 ITR 均显着提高。
摘要 — 本文通过脑机接口 (BCI) 解决了在室内自然环境中人形机器人远程操作的挑战。我们利用基于深度卷积神经网络 (CNN) 的图像和信号理解来促进实时物体检测和基于干脑电图 (EEG) 的人类皮层大脑生物信号解码。我们利用干脑电图技术的最新进展来传输和收集受试者的皮层波形,同时他们注视机器人正在导航的环境直接产生的可变稳态视觉诱发电位 (SSVEP) 刺激。为此,我们建议使用新的可变 BCI 刺激,利用通过机载机器人摄像头传输的实时视频作为 SSVEP 的视觉输入,其中 CNN 检测到的自然场景物体会以不同的频率 (10Hz、12Hz 和 15Hz) 发生改变和闪烁。这些刺激与传统刺激不同,因为闪烁区域的尺寸及其在屏幕上的位置都会根据检测到的场景物体而变化。通过这种基于干脑电图的 SSVEP 方法进行屏幕上的物体选择,有助于通过专门的二级 CNN 将人类皮层大脑信号直接在线解码为遥控机器人命令(接近物体,朝特定方向移动:向右、向左或向后)。该 SSVEP 解码模型是通过先验离线实验数据进行训练的,其中所有受试者的视觉输入都非常相似。在跨多个测试对象的实时机器人导航实验中,最终的分类表现出高性能,平均准确率为 85%。
摘要 - 电脑摄影仪(EEG)已被广泛用于脑部计算机界面(BCI),这使瘫痪的人能够由于其便携性,高时间分辨率,较高的时间分辨率,易用性和低成本而直接与外部设备进行通信和控制。基于稳态的视觉诱发电位(SSVEP)基于BCI的BCI系统,该系统使用多种视觉刺激(例如计算机屏幕上的LED或盒子)在不同频率上流动的数十年来,由于其快速通信速率和高信号速率和高信号率而被广泛探索。在本文中,我们回顾了基于SSVEP的BCI的当前研究,重点介绍了能够持续,准确检测SSVEP的数据分析,从而可以进行高信息传输率。在本文中描述了主要的技术挑战,包括信号预处理,频谱分析,信号分解,特定规范相关性分析及其变化以及分类技术的空间过滤。还讨论了自发性大脑活动,精神疲劳,转移学习以及混合BCI的研究挑战和机遇。