统计绩效期:10/2/2020-9/30/2023 DOE预算:$ 2,400K的成本份额:$ 60万美元的里程碑1:下降的最有前途的热化学材料,循环后,且能量密度低于100 o C,能量密度低于500 kWh/m 3。2021年3月的里程碑2:合成和优化的复合TCM,包括一个多孔支撑矩阵和惰性粘合剂,在2000年周期后实现热可靠性> 90%,能量密度> 250kWh/m 3。Sep 2022里程碑3:开发反应堆原型,并用以下属性演示反应器水平的性能:能量密度> 200 kWh/m 3,热可靠性> 90%> 90%> 200个循环。(正在进行的)2023年6月
市政水务业务以长期特许经营(在欧洲,主要是法国、西班牙、捷克共和国)、全资拥有或永久特许经营的方式运营,有助于增强威立雅的业务风险状况,因为它们占水务业务的最大份额(占 2022 年 EBITDA 总额的 36% 或 29 亿欧元)。这些活动受益于强大的现金流可见性,这要归功于支持性的监管框架(美国、智利)或强大的通胀保护功能(自动指数化),涵盖已发生的成本和资本支出(资本支出)。剩余的容量风险被这样一个事实所平衡:分配的水量大多不受宏观经济趋势的影响。事实上,人口增长、水资源短缺动态、水质和新的污染处理都支持了水量。
在世界上一个战略位置不那么重要的地区,糟糕的海洋治理所导致的问题可能只局限于当地,只影响沿海居民和附近过境的少数国际船只,但非洲之角绝非偏远地区。附近的曼德海峡是世界第四大航运咽喉要道,将印度洋和红海之间的海上交通汇集在一起。非洲和中东冲突地区之间的地缘战略位置为走私者、贩运者和跨国犯罪组织提供了有利可图的机会。广阔的索马里海洋环境拥有丰富的渔业资源,可供外国捕鱼船队利用。当地普遍的贫困,现在因持续的沿海冲突和严重的饥荒而加剧,为犯罪组织提供了源源不断的招募者。
授予的评级有利地考虑了该公司在新兴电池更换行业的健康市场地位(得益于先发优势)以及定期从资金雄厚的机构投资者那里筹集增长资本的成功记录,这有助于该公司保持舒适的流动性状况。尽管在新兴的电池更换市场运营,但经验丰富的领导团队、强劲的单位经济效益和健康的需求增长前景支撑了该评级,这得益于电动人力车 (e-rickshaws)、电动三轮车 (e3Ws) 和电动两轮车 (e2Ws) 的庞大总潜在市场。此外,在政府政策的支持下,印度电动汽车市场的乐观前景、先进的电池技术、不断下降的电池成本和不断提高的客户接受度预计将发展电动汽车生态系统并支持公司的增长前景。
二维过渡金属(TM)碳化物和碳氮化物(称为MXenes)自2011年首次亮相以来,由于其二维层状结构和优异的物理化学性质,在各个应用领域引起了极大关注。[1] MXenes 可以从相应的层状 MAX 相中衍生出来,其结构公式为 M n + 1 AX n(n = 1–3)。[2] MAX 相化合物由过渡金属(M)层与 C 或 N 层(X)交错组成,强的 M X 键进一步通过 III A 或 IV A 族元素(A)的单原子层插入,呈现原子层和六方晶体结构。[3,4] 通常,可以通过优先溶解和提取 MAX 相结构中弱键合的 A 层来获得 MXenes。 [5,6] 在水相中蚀刻和剥离过程中,高反应性的TM表面立即与F、OH和=O等物质连接,得到MXene通式:M n + 1 X n T x (T x 代表表面物质)。[7–9] 基于丰富的表面终端、独特的混合共价键和金属键的层状结构,MXenes表现出有趣的功能性能,如优异的电化学和光学性能、优异的热导率、高电导率和突出的机械特性。[10–13] MXenes的这些性质可以通过改变微观结构、元素组成和表面终端来进一步调节,[14–19] 例如,通过改变M或X元素、合金化M或X层,[20–24] 以及通过使用多元素(M)面外或面内顺序在MXene结构中构造特殊空位。 [23,25–29] 因此,多功能且具有潜在可扩展性的合成技术使 MXene 材料在性能可调的二维材料领域中占据了独特的地位。[30]
在发行和维持其评级并制作其他报告(包括预测信息)时,惠誉依靠它从发行人和承销商那里收到的事实信息以及其他来源惠誉认为是可信的。fitch根据其评级方法进行了合理的调查,对其依赖的事实信息进行了合理的调查,并在某种程度上可以合理地从独立来源验证该信息,以至于该来源可用于给定的安全性或给定管辖权。Fitch的事实调查的方式以及获得的第三方验证范围将根据评级安全性及其发行人的性质,提供和出售额定安全性的司法管辖区的要求和惯例而有所不同,并提供了发行人的确定性和/或发行人所在,可访问管理的可用性和性质
摘要 在数天和数周的时间里,在反复尝试学习任务的过程中,感觉运动皮层中代表动物位置和运动的神经活动被发现不断重新配置或“漂移”,而行为没有明显变化。这挑战了经典理论,经典理论认为稳定的印迹是稳定行为的基础。然而,目前尚不清楚这种漂移是否系统地发生,从而允许下游电路提取一致的信息。通过分析小鼠(Mus musculus)后顶叶皮层的长期钙成像记录,我们发现漂移受到系统性限制,远高于偶然性,从而有助于对行为变量进行线性加权读出。然而,漂移的显著成分不断降低固定读数,这意味着漂移并不局限于零编码空间。我们计算了独立于任何学习规则补偿漂移所需的可塑性量,并发现这在生理上可实现的范围内。我们证明,一个简单的、生物学上合理的局部学习规则可以达到这些界限,准确解码多天的行为。
零碳园区解决方案通过智能微电网云平台实现园区及楼宇碳排放的量化监测分析,提供全方位、多维度的碳排放统计、节能量、绿能容量在线监测分析,并运用光伏发电、储能、5G通讯、数字孪生等先进技术,提供监测、诊断、分析、节能评估、改善等全方位能源管理手段,提升园区运营效率和智能化管理水平,对园区环境、安全进行全面监控和高效管理,实现全方位能源管理。
摘要:半导体纳米晶体中电子和空穴之间的静电相互作用 (EI) 强度对其光电系统的性能有重大影响,不同的光电器件对活性介质的 EI 强度有不同的要求。然而,实现特定光电应用的 EI 强度的大范围和微调是一项艰巨的挑战,特别是在准二维核壳半导体纳米片 (NPL) 中,因为沿厚度方向的无机壳外延生长仅对量子限制效应有贡献,但却会严重削弱 EI 强度。在此,我们提出并展示了一种双梯度 (DG) 核壳结构的半导体 NPL,通过平面内结构调制控制局部激子浓度来按需调整 EI 强度,这通过对辐射复合率和激子结合能的广泛调整得到了证明。此外,这些激子浓度设计的 DG NPL 还表现出接近 1 的量子产率、高光和热稳定性以及显著抑制的自吸收。作为概念验证演示,基于 DG NPL 实现了高效的颜色转换器和高性能发光二极管(外部量子效率:16.9%,最大亮度:43,000 cd/m 2)。因此,这项工作为高性能胶体光电器件应用的开发提供了见解。关键词:半导体纳米片、接近 1 的量子产率、可定制的静电相互作用、高稳定性、光电子学
在大流行中恢复强劲后,皇家GDP在2024年下降到0.5%,这是因为海洋出口下降和年初的旅游业较弱。前者主要与缺乏卡普林鱼类捕捞有关,因为Capelin股票水平的关注促使冰岛海洋和淡水研究所建议在2023-2024赛季不钓鱼。旅游业的下降部分与冰岛西南部雷克雅内斯半岛的火山活动有关。在2025年,我们预测反弹,增长增长率为2.0%,得到了私人消费和出口的支持,然后在2026- 2028年平均为2.4%。集体工资交易在2024年初与整个私营部门的工会达成协议,平均每年约4%,这与通货膨胀息息相一致,应有助于支持国内需求。冰岛是全球工会成员率最高的:三分之二的私营部门工人是集体工资协议的一方。我们估计失业率在2023年记录3.4%之后,在2024年略有增加到3.8%,这是自2018年以来最低的。