可区分的神经计算机(DNC)在解决复杂问题方面具有显着的功能。在本文中,我们建议将增强的可区分神经计算机堆叠在一起,以扩展其学习能力。首先,我们对DNC进行了直观的解释,以解释建筑本质,并通过将其与常规的经常性神经网络(RNN)进行对比,证明了堆叠的可行性。其次,提出并修改了堆叠DNC的架构以进行脑电图(EEG)数据分析。我们将原始的长期记忆(LSTM)网络控制器替换为经常性的卷积网络控制器,并调整用于处理EEG EEG地形数据的内存访问结构。第三,我们提出的模型的实用性由开源的EEG数据集验证,其平均精度最高;然后,在微调参数后,我们显示了在专有EEG数据集上获得的最小平均误差。最后,通过分析训练有素的堆叠DNCS模型的行为特征,我们强调了在EEG信号处理中利用堆叠的DNC的适当性和潜力。
抽象的传统超高性能混凝土(UHPC)具有卓越的开发潜力。然而,在整个水泥制造过程中产生了大量的CO 2,这与当前在全球范围内降低排放和保存能量的趋势相反,从而限制了UHPC的进一步发展。考虑到气候变化和可持续性问题,无水泥,环保,碱活化的UHPC(AA-UHPC)材料最近受到了广泛关注。在旨在降低实验工具和人工成本的高级预测技术的出现之后,本研究提供了基于机器学习(ML)算法的不同方法的比较研究,以提出一种基于活跃的学习ML模型(AL-STAKED ML),以预测AA-UHPC的压缩强度。收集了包含284个实验数据集和18个输入参数的数据丰富的框架。对可能影响AA-UHPC抗压强度的输入特征的重要性进行了全面评估。结果证实,在本研究中已经测试过的不同一般实验标本的堆叠式ML-3可用于98.9%的AL-3。主动学习可以提高精度高达4.1%,并进一步增强堆叠的ML模型。此外,通过实验测试引入并验证了图形用户界面(GUI),以促进可比的前瞻性研究和预测。
b'abstract:与乙烯基连接的二维聚合物(V-2DPS)及其层堆叠的共价有机框架(V-2D COF)具有高平面内\ XCF \ XCF \ x80-Conjugation和Robobs框架的能量候选候选者。但是,当前的合成方法仅限于产生缺乏加工性的V-2D COF粉末,阻碍了它们进入设备,尤其是在依赖薄膜的膜技术中。在此,我们报告了通过knoevenagel多凝结的乙烯基链接阳离子2DPS膜(V-C2DP-1和V-C2DP-2)的新型水上表面合成,可作为高度可逆且基于耐用锌的Dual-iro-ion patchies(Zdibs)的阴离子选择性电极(作为阴离子)。模型反应和理论建模揭示了水面上knoevenagel反应的反应性和可逆性的增强。在此基础上,我们证明了对V-C2DPS膜的水表面2D多浓度,该膜显示出较大的侧向尺寸,可调厚度和高化学稳定性。代表性地,V-C2DP-1作为完全结晶和面向面的膜,具有A = B 43.3 \ XC3 \ X85的平面晶格参数。从定义明确的阳离子位点,定向的1D通道和稳定的框架中获利,V-C2DP-1膜具有优质的Bis(Trifluoromethanesulfonyl)Imide阴离子(TFSI)inImide(TFSI) - 转移率(T_ = 0.85),用于高空ZDIBS,从而在高空zdibs中进行transpertion andercation transportive and-Interc Zdib and Fratsion trande trander-dranscation-intrance zdib and。促进其特定能力(从〜83到124 mahg 1)和骑自行车寿命(> 1000个循环,能力保留95%)。
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'
根据2021年国际器件与系统路线图(IRDS),环栅晶体管(GAA)将从3nm技术节点开始取代FinFET,并应用于1nm技术节点。下一步,尺寸缩小的目标不仅是降低漏电,更重要的是降低功率,而包括三维异质集成在内的三维垂直架构将成为降低功耗的主流技术。要延续摩尔定律,不仅需要通过器件尺寸缩小来提高电路集成度,还需要降低功率和提高开关速度。堆叠式NSFET具有更好的静电完整性、短沟道免疫力,因此具有更好的功率缩放性能,是未来亚3nm技术节点的有希望的候选者[1−3]。
如今,多个生物电化学系统 (BES) 模块的堆叠配置被认为是成功扩大该技术规模的最佳选择,无论是发电微生物燃料电池 (MFC) 还是耗电微生物电解或电合成电池 (MEC 或 MES)。虽然并联电连接允许独立操作堆叠中的每个 BES 而不会出现重大问题,但从能量转换的角度来看,串联堆叠的 BES 更具吸引力,因为它们的能量损失较低,并且可以在更高的电压下操作它们。然而,在串联连接的 MEC/MES 电池的情况下,高性能生物阳极可以将堆叠中性能较差的电池推到其“工作区”之外,导致不利的电位、不受控制的电压下降以及电活性生物膜的暂时或永久损坏。过去提出了一些电池平衡系统 (CBS),但需要电力电子方面的专业知识。在这项研究中,提出了一种基于商用二极管的简单、被动且低成本的 CBS。采用三台双室 MEC。进行了第一组实验,以表征电池并了解串联电池堆中电压不平衡的原因。然后,采用并验证了 CBS。
抽象可区分的神经计算机(DNC)在解决复杂问题方面表现出了显着的功能。在本文中,我们建议将增强的可区分神经计算机堆叠在一起,以扩展其学习能力。首先,我们对DNC进行了直观的解释来解释建筑本质,并通过将其与常规的经常性神经网络进行对比,证明了堆叠的可行性。其次,提出了堆叠DNC的结构,并修改了脑电图(EEG)数据分析的构建。我们用经常性的卷积网络控制器替换原始的长期短期内存网络控制器,并调整用于处理EEG EEG地形数据的内存访问结构。第三,我们提出的模型的实用性由开源的EEG数据集验证,其平均精度最高。然后,在调整参数后,我们显示了在专有EEG数据集上获得的最小平均误差。最后,通过分析训练有素的堆叠DNCS模型的行为特征,我们强调了在EEG信号处理中利用堆叠的DNC的适当性和潜力。